RESUMO
Impaired secretion of an essential blood coagulation factor fibrinogen leads to hepatic fibrinogen storage disease (HFSD), characterized by the presence of fibrinogen-positive inclusion bodies and hypofibrinogenemia. However, the molecular mechanisms underlying the biogenesis of fibrinogen in the endoplasmic reticulum (ER) remain unexplored. Here we uncover a key role of SEL1L-HRD1 complex of ER-associated degradation (ERAD) in the formation of aberrant inclusion bodies, and the biogenesis of nascent fibrinogen protein complex in hepatocytes. Acute or chronic deficiency of SEL1L-HRD1 ERAD in the hepatocytes leads to the formation of hepatocellular inclusion bodies. Proteomics studies followed by biochemical assays reveal fibrinogen as a major component of the inclusion bodies. Mechanistically, we show that the degradation of misfolded endogenous fibrinogen Aα, Bß, and γ chains by SEL1L-HRD1 ERAD is indispensable for the formation of a functional fibrinogen complex in the ER. Providing clinical relevance of these findings, SEL1L-HRD1 ERAD indeed degrades and thereby attenuates the pathogenicity of two disease-causing fibrinogen γ mutants. Together, this study demonstrates an essential role of SEL1L-HRD1 ERAD in fibrinogen biogenesis and provides insight into the pathogenesis of protein-misfolding diseases.
Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático , Fibrinogênio , Corpos de Inclusão , Fígado , Ubiquitina-Proteína Ligases , Animais , Humanos , Masculino , Camundongos , Afibrinogenemia/metabolismo , Afibrinogenemia/genética , Retículo Endoplasmático/metabolismo , Fibrinogênio/metabolismo , Fibrinogênio/genética , Células HEK293 , Hepatócitos/metabolismo , Corpos de Inclusão/metabolismo , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dobramento de Proteína , Proteínas/metabolismo , Proteínas/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genéticaRESUMO
Integrins play critical roles in connecting the extracellular matrix and actin. While the upregulation of integrins is thought to promote cancer stemness and metastasis, the mechanisms underlying their upregulation in cancer stem cells (CSCs) remain poorly understood. Herein, we show that USP22 is essential in maintaining breast cancer cell stemness by promoting the transcription of integrin ß1 (ITGB1). Both genetic and pharmacological inhibition of USP22 largely impaired breast CSCs self-renewal and prevented their metastasis. Reconstitution of integrin ß1 partially rescued USP22-null breast cancer metastasis. USP22 functions as a bona fide deubiquitinase to protect the proteasomal degradation of the forkhead box M1 (FoxM1), a transcription factor for tumoral ITGB1 gene transcription. Immunohistochemistry staining detected a positive correlation among USP22, FoxM1, and integrin ß1 in human breast cancers. Collectively, our study identifies the USP22-FoxM1-integrin ß1 signaling axis as critical for cancer stemness and offers a potential target for antitumor therapy.
RESUMO
Chronic stress-induced epinephrine (EPI) accelerates breast cancer progression and metastasis, but the molecular mechanisms remain unclear. Herein, we found a strong positive correlation between circulating EPI levels and the tumoral expression of ubiquitin-specific peptidase 22 (USP22) in patients with breast cancer. USP22 facilitated EPI-induced breast cancer progression and metastasis by enhancing adipose triglyceride lipase (ATGL)-mediated lipolysis. Targeted USP22 deletion decreased ATGL expression and lipolysis, subsequently inhibiting EPI-mediated breast cancer lung metastasis. USP22 acts as a bona fide deubiquitinase for the Atgl gene transcription factor FOXO1, and EPI architects a lipolysis signaling pathway to stabilize USP22 through AKT-mediated phosphorylation. Notably, USP22 phosphorylation levels are positively associated with EPI and with downstream pathways involving both FOXO1 and ATGL in breast cancers. Pharmacological USP22 inhibition synergized with ß-blockers in treating preclinical xenograft breast cancer models. This study reveals a molecular pathway behind EPI's tumor-promoting effects and provides a strong rationale for combining USP22 inhibition with ß-blockers to treat aggressive breast cancer.
Assuntos
Neoplasias da Mama , Epinefrina , Lipólise , Ubiquitina Tiolesterase , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Lipólise/efeitos dos fármacos , Feminino , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Epinefrina/metabolismo , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Lipase/metabolismo , Lipase/genética , Transdução de Sinais/efeitos dos fármacos , Metástase Neoplásica , Fosforilação , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , AciltransferasesRESUMO
Therapeutic antibodies have become one of the most influential therapeutics in modern medicine to fight against infectious pathogens, cancer, and many other diseases. However, experimental screening for highly efficacious targeting antibodies is labor-intensive and of high cost, which is exacerbated by evolving antigen targets under selective pressure such as fast-mutating viral variants. As a proof-of-concept, we developed a machine learning-assisted antibody generation pipeline AbGen that greatly accelerates the screening and re-design of immunoglobulins G (IgGs) against a broad spectrum of SARS-CoV-2 coronavirus variant strains. Our AbGen centers around a novel antibody language model (AbLM) that is pretrained on 12 million generic protein domain sequences and fine-tuned on 4,000+ paired VH-VL sequences, with IgG-specific CDR-masking and VH-VL cross-attention. AbLM provides a latent space of IgG sequence embeddings for AbGen, including (a) landscapes of IgGs' activities in neutralizing the wild-type virus are analyzed through structure prediction for IgG and IgG-antigen (viral protein spike's receptor binding domain, RBD) interactions; and (b) landscapes of IgGs' susceptibility in neutralizing variant viruses are predicted through Gaussian process regression, despite that as few as 14 clinical antibodies' responses to variants of concern are available. The AbGen pipeline was applied to over 1300 IgG sequences we collected from RBD-binding B cells of convalescent patients. With experimental validations, AbGen efficiently prioritized IgG candidates against a broad spectrum of viral variants (wildtype, Delta, and Omicron), preventing the infection of host cells in vitro and hACE2 transgenic mice in vivo. Compared to other existing protein language models that require 10-100 times more model parameters, AbLM improved the precision from around 50% to 75% to predict IgGs with low variant susceptibility. Furthermore, AbGen enables structure-based computational protein redesign for selected IgG clones with single amino acid substitutions at the RBD-binding interface that doubled the IgG blockade efficacy for one of the severe, therapy-resistant strains - Delta (B.1.617). Our work expedites applications of artificial intelligence in antibody screen and re-design combining data-driven protein language models and Kriging for antibody sequence analysis and activity prediction, in synergy with physics-driven protein docking and design for antibody-antigen interface analyses and functional optimization.
RESUMO
While immunotherapy has revolutionized cancer treatment, its safety has been hampered by immunotherapy-related adverse events. Unexpectedly, we show that Mediator complex subunit 1 (MED1) is required for T regulatory (Treg) cell function specifically in the tumor microenvironment. Treg cell-specific MED1 deletion does not predispose mice to autoimmunity or excessive inflammation. In contrast, MED1 is required for Treg cell promotion of tumor growth because MED1 is required for the terminal differentiation of effector Treg cells in the tumor. Suppression of these terminally differentiated Treg cells is sufficient for eliciting antitumor immunity. Both human and murine Treg cells experience divergent paths of differentiation in tumors and matched tissues with non-malignant inflammation. Collectively, we identify a pathway promoting the differentiation of a Treg cell effector subset specific to tumors and demonstrate that suppression of a subset of Treg cells is sufficient for promoting antitumor immunity in the absence of autoimmune consequences.
Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Animais , Camundongos , Subunidade 1 do Complexo Mediador/metabolismo , Fatores de Transcrição Forkhead , Neoplasias/patologia , Inflamação/metabolismo , Microambiente TumoralRESUMO
Human papillomavirus (HPV) is predominantly associated with HPV-related cancers, however, the precise mechanisms underlying the HPV-host epigenetic architectures in HPV carcinogenesis remain elusive. Here, we employed high-throughput chromosome conformation capture (Hi-C) to comprehensively map HPV16/18-host chromatin interactions. Our study identified the transcription factor Sp1 as a pivotal mediator in programming HPV-host interactions. By targeting Sp1, the active histone modifications (H3K27ac, H3K4me1, and H3K4me3) and the HPV-host chromatin interactions are reprogrammed, which leads to the downregulation of oncogenes located near the integration sites in both HPV (E6/E7) and the host genome (KLF5/MYC). Additionally, Sp1 inhibition led to the upregulation of immune checkpoint genes by reprogramming histone modifications in host cells. Notably, humanized patient-derived xenograft (PDX-HuHSC-NSG) models demonstrated that Sp1 inhibition promoted anti-PD-1 immunotherapy via remodeling the tumor immune microenvironment in cervical cancer. Moreover, single-cell transcriptomic analysis validated the enrichment of transcription factor Sp1 in epithelial cells of cervical cancer. In summary, our findings elucidate Sp1 as a key mediator involved in the programming and reprogramming of HPV-host epigenetic architecture. Inhibiting Sp1 with plicamycin may represent a promising therapeutic option for HPV-related carcinoma.
Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Cromatina/genética , Epigênese Genética , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/metabolismo , Papillomavirus Humano , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/terapia , Fatores de Transcrição/genética , Microambiente Tumoral , Neoplasias do Colo do Útero/patologiaRESUMO
Regulation of tumoral PD-L1 expression is critical to advancing our understanding of tumor immune evasion and the improvement of existing antitumor immunotherapies. Herein, we describe a CRISPR-based screening platform and identified ATXN3 as a positive regulator for PD-L1 transcription. TCGA database analysis revealed a positive correlation between ATXN3 and CD274 in more than 80% of human cancers. ATXN3-induced Pd-l1 transcription was promoted by tumor microenvironmental factors, including the inflammatory cytokine IFN-γ and hypoxia, through protection of their downstream transcription factors IRF1, STAT3, and HIF-2α. Moreover, ATXN3 functioned as a deubiquitinase of the AP-1 transcription factor JunB, indicating that ATNX3 promotes PD-L1 expression through multiple pathways. Targeted deletion of ATXN3 in cancer cells largely abolished IFN-γ- and hypoxia-induced PD-L1 expression and consequently enhanced antitumor immunity in mice, and these effects were partially reversed by PD-L1 reconstitution. Furthermore, tumoral ATXN3 suppression improved the preclinical efficacy of checkpoint blockade antitumor immunotherapy. Importantly, ATXN3 expression was increased in human lung adenocarcinoma and melanoma, and its levels were positively correlated with PD-L1 as well as its transcription factors IRF1 and HIF-2α. Collectively, our study identifies what we believe to be a previously unknown deubiquitinase, ATXN3, as a positive regulator for PD-L1 transcription and provides a rationale for targeting ATXN3 to sensitize checkpoint blockade antitumor immunotherapy.
Assuntos
Neoplasias Pulmonares , Evasão Tumoral , Humanos , Animais , Camundongos , Evasão Tumoral/genética , Antígeno B7-H1 , Fatores de Transcrição , Imunoterapia , Neoplasias Pulmonares/patologia , Hipóxia , Enzimas Desubiquitinantes , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Linhagem Celular Tumoral , Microambiente Tumoral , Ataxina-3 , Proteínas RepressorasRESUMO
Integrins plays critical roles in connecting the extracellular matrix and actin skeleton for cell adhesion, migration, signal transduction, and gene transcription, which upregulation is involved in cancer stemness and metastasis. However, the molecular mechanisms underlying how integrins are upregulated in cancer stem cells (CSCs) remain as a biomedical mystery. Herein, we show that the death from cancer signature gene USP22 is essential to maintain the stemness of breast cancer cells through promoting the transcription of a group of integrin family members in particular integrin ß1 (ITGB1). Both genetic and pharmacological USP22 inhibition largely impaired breast cancer stem cell self-renewal and prevented their metastasis. Integrin ß1 reconstitution partially rescued USP22-null breast cancer stemness and their metastasis. At the molecular level, USP22 functions as a bona fide deubiquitinase to protect the proteasomal degradation of the forkhead box M1 (FoxM1), a transcription factor for tumoral ITGB1 gene transcription. Importantly unbiased analysis of the TCGA database revealed a strong positive correlation between the death from cancer signature gene ubiquitin-specific peptidase 22 (USP22) and ITGB1, both of which are critical for cancer stemness, in more than 90% of human cancer types, implying that USP22 functions as a key factor to maintain stemness for a broad spectrum of human cancer types possibly through regulating ITGB1. To support this notion, immunohistochemistry staining detected a positive correlation among USP22, FoxM1 and integrin ß1 in human breast cancers. Collectively, our study identifies the USP22-FoxM1-integrin ß1 signaling axis critical for cancer stemness and offers a potential target for antitumor therapy.
RESUMO
BACKGROUND: Similarities between luteinized thecoma associated with sclerosing peritonitis (LTSP) and thecoma, cause difficulty in clinical differential diagnoses. To improve the situation, we selected 10 specified molecular pathological markers that are frequently used in clinical pathology of ovarian sex cord-stromal tumors to determine whether they exert a discriminatory effect. METHODS: Applying immunohistochemistry, we analyzed the expression of alpha-1,6-mannosylglycoprotein 6-beta-n-acetylglucosaminyltransferase B (MGAT5B), nuclear receptor coactivator 3 (NCOA3), proliferation marker protein Ki-67 (MKI67), estrogen receptor, progesterone receptor, Vimentin, receptor tyrosine-protein kinase erbB-2, Catenin beta-1 (ß-Catenin), CD99 antigen (CD99) and Wilms tumor protein (WT1) in 102 cases of diseases containing 11 LTSP and 91 thecoma. Whole-exome sequencing and fluorescence in situ hybridization were used to examine the MGAT5B-NCOA3 fusion gene in LTSP. Statistical analysis was performed using t test, one-way analysis of variance test, and post hoc test. RESULTS: Six significant markers were verified for the discrimination between LTSP and thecoma, containing 4 upregulating indicators MGAT5B, NCOA3, MKI67, ß-Catenin, and 2 downregulating markers CD99 and WT1 in luteinized cells. In addition, the MGAT5B-NCOA3 fusion gene was identified in LTSP for the first time with significantly rich expression compared to thecoma. CONCLUSIONS: We verified 6 significant molecular pathological markers containing MGAT5B, NCOA3, MKI67, ß-Catenin, CD99, and WT1 and identified MGAT5B-NCOA3 fusion gene in LTSP; this work will help clinicians to discriminate between medical conditions and treat patients accurately.
Assuntos
Neoplasias Ovarianas , Fibrose Peritoneal , Peritonite , Tumor da Célula Tecal , Feminino , Humanos , Tumor da Célula Tecal/diagnóstico , beta Catenina/genética , Hibridização in Situ Fluorescente , Peritonite/etiologia , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológicoRESUMO
Over two years into the COVID-19 pandemic, the human immune response to SARS-CoV-2 during the active disease phase has been extensively studied. However, the long-term impact after recovery, which is critical to advance our understanding SARS-CoV-2 and COVID-19-associated long-term complications, remains largely unknown. Herein, we characterized single-cell profiles of circulating immune cells in the peripheral blood of 100 patients, including convalescent COVID-19 and sero-negative controls. Flow cytometry analyses revealed reduced frequencies of both short-lived monocytes and long-lived regulatory T (Treg) cells within the patients who have recovered from severe COVID-19. sc-RNA seq analysis identifies seven heterogeneous clusters of monocytes and nine Treg clusters featuring distinct molecular signatures in association with COVID-19 severity. Asymptomatic patients contain the most abundant clusters of monocytes and Tregs expressing high CD74 or IFN-responsive genes. In contrast, the patients recovered from a severe disease have shown two dominant inflammatory monocyte clusters featuring S100 family genes: one monocyte cluster of S100A8 & A9 coupled with high HLA-I and another cluster of S100A4 & A6 with high HLA-II genes, a specific non-classical monocyte cluster with distinct IFITM family genes, as well as a unique TGF-ß high Treg Cluster. The outpatients and seronegative controls share most of the monocyte and Treg clusters patterns with high expression of HLA genes. Surprisingly, while presumably short-lived monocytes appear to have sustained alterations over 4 months, the decreased frequencies of long-lived Tregs (high HLA-DRA and S100A6) in the outpatients restore over the tested convalescent time (≥ 4 months). Collectively, our study identifies sustained and dynamically altered monocytes and Treg clusters with distinct molecular signatures after recovery, associated with COVID-19 severity.
Assuntos
COVID-19 , Monócitos , Humanos , COVID-19/metabolismo , Linfócitos T Reguladores , Pandemias , SARS-CoV-2RESUMO
OBJECTIVE: To compare the diagnostic efficiency of a fluorescence colposcope with TMTP1-PEG4-ICG dye versus a conventional colposcope with acetic acid and Lugol's iodine in identifying cervical precancerous lesions. METHODS: In all, 218 women with abnormal cervical cancer screening results including cytology and/or human papillomavirus (HPV) test were involved in the randomized controlled trial. Patients in the fluorescence colposcope group had TMTP1-PEG4-ICG dye applied to the cervix uteri before colposcopy. Patients in the conventional colposcope group were routinely administered acetic acid and Lugol's iodine to stain the cervix uteri. Two to four cervical sites per patient were taken out for biopsy. The diagnostic efficiency of fluorescence colposcopy and conventional colposcopy was calculated on a per-patient and per-site basis. χ2 test or Fisher exact test was used. RESULTS: A total of 194 patients and the corresponding 662 cervical sites were included in the final analysis. There was no statistically significant difference in the diagnostic efficiency between the two groups both on a per-patient and a per-site basis, including accuracy, sensitivity, specificity, positive predictive value, and negative predictive value. CONCLUSIONS: The fluorescence colposcope with TMTP1-PEG4-ICG dye was comparable to the conventional colposcope in identifying cervical precancerous lesions.
Assuntos
Lesões Pré-Cancerosas , Neoplasias do Colo do Útero , Humanos , Feminino , Colo do Útero/diagnóstico por imagem , Colposcópios , Detecção Precoce de Câncer , Neoplasias do Colo do Útero/diagnóstico , Ácido Acético , Lesões Pré-Cancerosas/diagnóstico por imagemRESUMO
Iron homeostasis is critical for cellular and organismal function and is tightly regulated to prevent toxicity or anemia due to iron excess or deficiency, respectively. However, subcellular regulatory mechanisms of iron remain largely unexplored. Here, we report that SEL1L-HRD1 protein complex of endoplasmic reticulum (ER)-associated degradation (ERAD) in hepatocytes controls systemic iron homeostasis in a ceruloplasmin (CP)-dependent, and ER stress-independent, manner. Mice with hepatocyte-specific Sel1L deficiency exhibit altered basal iron homeostasis and are sensitized to iron deficiency while resistant to iron overload. Proteomics screening for a factor linking ERAD deficiency to altered iron homeostasis identifies CP, a key ferroxidase involved in systemic iron distribution by catalyzing iron oxidation and efflux from tissues. Indeed, CP is highly unstable and a bona fide substrate of SEL1L-HRD1 ERAD. In the absence of ERAD, CP protein accumulates in the ER and is shunted to refolding, leading to elevated secretion. Providing clinical relevance of these findings, SEL1L-HRD1 ERAD is responsible for the degradation of a subset of disease-causing CP mutants, thereby attenuating their pathogenicity. Together, this study uncovers the role of SEL1L-HRD1 ERAD in systemic iron homeostasis and provides insights into protein misfolding-associated proteotoxicity.
Assuntos
Ceruloplasmina , Degradação Associada com o Retículo Endoplasmático , Camundongos , Animais , Ceruloplasmina/genética , Ubiquitina-Proteína Ligases/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas/metabolismo , Homeostase , Ferro/metabolismoRESUMO
It is well known that Keller-Segel models serve as a paradigm to describe the self aggregation phenomenon, which exists in a variety of biological processes such as wound healing, tumor growth, etc. In this paper, we study the existence of monotone decreasing spiky steady state and its linear stability property in the Keller-Segel model with logistic growth over one-dimensional bounded domain subject to homogeneous Neumann boundary conditions. Under the assumption that chemo-attractive coefficient is asymptotically large, we construct the single boundary spike and next show this non-constant steady state is locally linear stable via Lyapunov-Schmidt reduction method. As a consequence, the multi-symmetric spikes are obtained by reflection and periodic extension. In particular, we present the formal analysis to illustrate our rigorous theoretical results.
Assuntos
CicatrizaçãoRESUMO
The tumor microenvironment (TME) enhances regulatory T (Treg) cell stability and immunosuppressive functions through up-regulation of lineage transcription factor Foxp3, a phenomenon known as Treg fitness or adaptation. Here, we characterize previously unknown TME-specific cellular and molecular mechanisms underlying Treg fitness. We demonstrate that TME-specific stressors including transforming growth factor-ß (TGF-ß), hypoxia, and nutrient deprivation selectively induce two Foxp3-specific deubiquitinases, ubiquitin-specific peptidase 22 (Usp22) and Usp21, by regulating TGF-ß, HIF, and mTOR signaling, respectively, to maintain Treg fitness. Simultaneous deletion of both USPs in Treg cells largely diminishes TME-induced Foxp3 up-regulation, alters Treg metabolic signatures, impairs Treg-suppressive function, and alleviates Treg suppression on cytotoxic CD8+ T cells. Furthermore, we developed the first Usp22-specific small-molecule inhibitor, which dramatically reduced intratumoral Treg Foxp3 expression and consequently enhanced antitumor immunity. Our findings unveil previously unappreciated mechanisms underlying Treg fitness and identify Usp22 as an antitumor therapeutic target that inhibits Treg adaptability in the TME.
Assuntos
Fatores de Transcrição Forkhead , Microambiente Tumoral , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T Reguladores , Fator de Crescimento Transformador beta/metabolismoRESUMO
Endoplasmic reticulum (ER) homeostasis has been implicated in the pathogenesis of various forms of cancer; however, our understanding of the role of ER quality control mechanisms in tumorigenesis remains incomplete. Here, we show that the SEL1L-HRD1 complex of ER-associated degradation (ERAD) suppresses hepatocyte proliferation and tumorigenesis in mice. Hepatocyte-specific deletion of Sel1L or Hrd1 predisposed mice to diet/chemical-induced tumors. Proteomics screen from SEL1L-deficient livers revealed WNT5A, a tumor suppressor, as an ERAD substrate. Indeed, nascent WNT5A was misfolding prone and degraded by SEL1L-HRD1 ERAD in a quality control capacity. In the absence of ERAD, WNT5A misfolds is largely retained in the ER and forms high-molecular weight aggregates, thereby depicting a loss-of-function effect and attenuating WNT5A-mediated suppression of hepatocyte proliferation. In humans, SEL1L-HRD1 ERAD expression correlated positively with survival time for patients with liver cancer. Overall, our data reveal a key role of SEL1L-HRD1 ERAD in suppressing hepatocyte proliferation and liver cancer.
RESUMO
Over two years into the COVID-19 pandemic, the human immune response to SARS-CoV-2 during the active disease phase has been extensively studied. However, the long-term impact after recovery, which is critical to advance our understanding SARS-CoV-2 and COVID-19-associated long-term complications, remains largely unknown. Herein, we characterized multi-omic single-cell profiles of circulating immune cells in the peripheral blood of 100 patients, including covenlesent COVID-19 and sero-negative controls. The reduced frequencies of both short-lived monocytes and long-lived regulatory T (Treg) cells are significantly associated with the patients recovered from severe COVID-19. Consistently, sc-RNA seq analysis reveals seven heterogeneous clusters of monocytes (M0-M6) and ten Treg clusters (T0-T9) featuring distinct molecular signatures and associated with COVID-19 severity. Asymptomatic patients contain the most abundant clusters of monocyte and Treg expressing high CD74 or IFN-responsive genes. In contrast, the patients recovered from a severe disease have shown two dominant inflammatory monocyte clusters with S100 family genes: S100A8 & A9 with high HLA-I whereas S100A4 & A6 with high HLA-II genes, a specific non-classical monocyte cluster with distinct IFITM family genes, and a unique TGF-ß high Treg Cluster. The outpatients and seronegative controls share most of the monocyte and Treg clusters patterns with high expression of HLA genes. Surprisingly, while presumably short-ived monocytes appear to have sustained alterations over 4 months, the decreased frequencies of long-lived Tregs (high HLA-DRA and S100A6) in the outpatients restore over the tested convalescent time (>= 4 months). Collectively, our study identifies sustained and dynamically altered monocytes and Treg clusters with distinct molecular signatures after recovery, associated with COVID-19 severity.
RESUMO
Paclitaxel remains the first-line chemotherapy regimen for many malignant tumors. However, prognosis and adverse events under different dosing regimens (one-week versus three-week treatment) remain contradictory in many randomized controlled trials (RCTs). Here, we performed a comprehensive meta-analysis to measure the efficacy and toxicities of these two dosing regimens. Four databases were systematically retrieved. RCTs comparing two paclitaxel dosing regimens for advanced malignant tumors with assessable outcomes (e.g., overall survival (OS), progression-free survival (PFS), toxicities, response rates) were included. In total, 19 eligible RCTs involving 9 674 patients were included. Meta-analysis of pan-cancers revealed that weekly paclitaxel treatment was more beneficial regarding PFS compared to three-week paclitaxel treatment (hazard ratio (HR) = 0.90, 95% confidence interval (CI) = 0.82-0.99, P = 0.02). Nevertheless, there was no significant difference in terms of OS between the two dosing regimens (HR = 0.98, 95%CI = 0.91-1.06, P = 0.62) or other tested subgroups. In terms of serious adverse events, grade 3 or 4 (G3/4) neutropenia, G3/4 febrile neutropenia, G3/4 arthritis, and G3/4 alopecia occurred less often under weekly paclitaxel treatment. In summary, Weekly paclitaxel treatment demonstrates better PFS and fewer chemotherapy-induced hematological and non-hematological toxicities compared to the three-week paclitaxel regimen.
Assuntos
Carcinoma , Paclitaxel , Carcinoma/tratamento farmacológico , Humanos , Paclitaxel/uso terapêutico , Intervalo Livre de ProgressãoRESUMO
Cancer cells evade the immune system by expressing inhibitory immune checkpoint receptors such as ecto-5'-nucleotidase (NT5E), also known as CD73, which consequently suppress tumor neoantigen-specific immune response. Blockade of CD73 in mouse models of breast cancer showed a reduction in tumor growth and metastasis. CD73 expression is elevated in a variety of human tumors including breast cancer. While the regulation of CD73 expression at the transcriptional level has been well understood, the factors involved in regulating CD73 expression at the post-transcriptional level have not been identified. Herein, we discovered that the ubiquitin-specific peptidase 22 (USP22), a deubiquitinase associated with poor prognosis and overexpressed in breast cancers, is a positive regulator for CD73. Targeted USP22 deletion resulted in a statistically significant reduction in CD73 protein expression. In contrast, CD73 mRNA expression levels were not reduced, but even slightly increased by USP22 deletion. Further analysis demonstrated that USP22 is a deubiquitinase that specifically interacts with and inhibits CD73 ubiquitination. Consequently, USP22 protects CD73 from ubiquitin-mediated proteasomal degradation in breast cancer cells. Targeted USP22 deletion, inhibits syngeneic breast cancer growth. Collectively, our study reveals USP22 as a positive regulator to promote CD73 expression in breast cancer and provides a rationale to target USP22 in antitumor immune therapy.
RESUMO
Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) lumen triggers an unfolded protein response (UPR) for stress adaptation, the failure of which induces cell apoptosis and tissue/organ damage. The molecular switches underlying how the UPR selects for stress adaptation over apoptosis remain unknown. Here, we discovered that accumulation of unfolded/misfolded proteins selectively induces N6-adenosine-methyltransferase-14 (METTL14) expression. METTL14 promotes C/EBP-homologous protein (CHOP) mRNA decay through its 3' UTR N6-methyladenosine (m6A) to inhibit its downstream pro-apoptotic target gene expression. UPR induces METTL14 expression by competing against the HRD1-ER-associated degradation (ERAD) machinery to block METTL14 ubiquitination and degradation. Therefore, mice with liver-specific METTL14 deletion are highly susceptible to both acute pharmacological and alpha-1 antitrypsin (AAT) deficiency-induced ER proteotoxic stress and liver injury. Further hepatic CHOP deletion protects METTL14 knockout mice from ER-stress-induced liver damage. Our study reveals a crosstalk between ER stress and mRNA m6A modification pathways, termed the ERm6A pathway, for ER stress adaptation to proteotoxicity.