Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Mol Biol Evol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885310

RESUMO

Large-scale genomic projects and ancient DNA innovations have ushered in a new paradigm for exploring human evolutionary history. However, the genetic legacy of spatiotemporally diverse ancient Eurasians within Chinese paternal lineages remains unresolved. Here, we report an integrated Y-chromosome genomic database encompassing 15,563 individuals from both modern and ancient Eurasians, including 919 newly reported individuals, to investigate Chinese paternal genomic diversity. The high-resolution, time-stamped phylogeny reveals multiple diversification events and extensive expansions in the early and middle Neolithic. We identify four major ancient population movements, each associated with technological innovations, that have shaped the Chinese paternal landscape. Firstly, the expansion of early East Asians and millet farmers from the Yellow River Basin, predominantly carrying O2/D subclades, significantly influenced the formation of the Sino-Tibetan people and facilitated the permanent settlement of the Tibetan Plateau. Secondly, the dispersal of rice farmers from the Yangtze River Valley, carrying O1 and certain O2 sublineages, reshapes the genetic makeup of southern Han Chinese, as well as the Tai-Kadai, Austronesian, Hmong-Mien, and Austroasiatic people. Thirdly, Neolithic Siberian Q/C paternal lineages originated and proliferated among hunter-gatherers on the Mongolian Plateau and the Amur River Basin, leaving a significant imprint on the gene pools of northern China. Fourthly, J/G/R paternal lineages derived from western Eurasia, which were initially spread by Yamnaya-related steppe pastoralists, maintain their presence primarily in northwestern China. Overall, our research provides comprehensive genetic evidence elucidating the significant impact of interactions with culturally distinct ancient Eurasians on the patterns of paternal diversity in modern Chinese populations.

2.
BMC Biol ; 22(1): 18, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273256

RESUMO

BACKGROUND: The underrepresentation of Hmong-Mien (HM) people in Asian genomic studies has hindered our comprehensive understanding of the full landscape of their evolutionary history and complex trait architecture. South China is a multi-ethnic region and indigenously settled by ethnolinguistically diverse HM, Austroasiatic (AA), Tai-Kadai (TK), Austronesian (AN), and Sino-Tibetan (ST) people, which is regarded as East Asia's initial cradle of biodiversity. However, previous fragmented genetic studies have only presented a fraction of the landscape of genetic diversity in this region, especially the lack of haplotype-based genomic resources. The deep characterization of demographic history and natural-selection-relevant genetic architecture of HM people was necessary. RESULTS: We reported one HM-specific genomic resource and comprehensively explored the fine-scale genetic structure and adaptative features inferred from the genome-wide SNP data of 440 HM individuals from 33 ethnolinguistic populations, including previously unreported She. We identified solid genetic differentiation between HM people and Han Chinese at 7.64‒15.86 years ago (kya) and split events between southern Chinese inland (Miao/Yao) and coastal (She) HM people in the middle Bronze Age period and the latter obtained more gene flow from Ancient Northern East Asians. Multiple admixture models further confirmed that extensive gene flow from surrounding ST, TK, and AN people entangled in forming the gene pool of Chinese coastal HM people. Genetic findings of isolated shared unique ancestral components based on the sharing alleles and haplotypes deconstructed that HM people from the Yungui Plateau carried the breadth of previously unknown genomic diversity. We identified a direct and recent genetic connection between Chinese inland and Southeast Asian HM people as they shared the most extended identity-by-descent fragments, supporting the long-distance migration hypothesis. Uniparental phylogenetic topology and network-based phylogenetic relationship reconstruction found ancient uniparental founding lineages in southwestern HM people. Finally, the population-specific biological adaptation study identified the shared and differentiated natural selection signatures among inland and coastal HM people associated with physical features and immune functions. The allele frequency spectrum of cancer susceptibility alleles and pharmacogenomic genes showed significant differences between HM and northern Chinese people. CONCLUSIONS: Our extensive genetic evidence combined with the historical documents supported the view that ancient HM people originated from the Yungui regions associated with ancient "Three-Miao tribes" descended from the ancient Daxi-Qujialing-Shijiahe people. Then, some have recently migrated rapidly to Southeast Asia, and some have migrated eastward and mixed respectively with Southeast Asian indigenes, Liangzhu-related coastal ancient populations, and incoming southward ST people. Generally, complex population migration, admixture, and adaptation history contributed to the complicated patterns of population structure of geographically diverse HM people.


Assuntos
População do Leste Asiático , Genética Populacional , Humanos , China , Genômica , Haplótipos , Filogenia
3.
BMC Genomics ; 24(1): 611, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828453

RESUMO

Uniparental-inherited haploid genetic marker of Y-chromosome single nucleotide polymorphisms (Y-SNP) have the power to provide a deep understanding of the human evolutionary past, forensic pedigree, and bio-geographical ancestry information. Several international cross-continental or regional Y-panels instead of Y-whole sequencing have recently been developed to promote Y-tools in forensic practice. However, panels based on next-generation sequencing (NGS) explicitly developed for Chinese populations are insufficient to represent the Chinese Y-chromosome genetic diversity and complex population structures, especially for Chinese-predominant haplogroup O. We developed and validated a 639-plex panel including 633 Y-SNPs and 6 Y-Insertion/deletions, which covered 573 Y haplogroups on the Y-DNA haplogroup tree. In this panel, subgroups from haplogroup O accounted for 64.4% of total inferable haplogroups. We reported the sequencing metrics of 354 libraries sequenced with this panel, with the average sequencing depth among 226 individuals being 3,741×. We illuminated the high level of concordance, accuracy, reproducibility, and specificity of the 639-plex panel and found that 610 loci were genotyped with as little as 0.03 ng of genomic DNA in the sensitivity test. 94.05% of the 639 loci were detectable in male-female mixed DNA samples with a mix ratio of 1:500. Nearly all of the loci were genotyped correctly when no more than 25 ng/µL tannic acid, 20 ng/µL humic acid, or 37.5 µM hematin was added to the amplification mixture. More than 80% of genotypes were obtained from degraded DNA samples with a degradation index of 11.76. Individuals from the same pedigree shared identical genotypes in 11 male pedigrees. Finally, we presented the complex evolutionary history of 183 northern Chinese Hans and six other Chinese populations, and found multiple founding lineages that contributed to the northern Han Chinese gene pool. The 639-plex panel proved an efficient tool for Chinese paternal studies and forensic applications.


Assuntos
População do Leste Asiático , Polimorfismo de Nucleotídeo Único , Humanos , Genótipo , Reprodutibilidade dos Testes , Genética Populacional , Haplótipos , Cromossomos Humanos Y/genética , DNA
4.
Front Genet ; 14: 1243730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554407

RESUMO

Previous studies demonstrated Y chromosome haplogroup C2a-M48-SK1061 is the only founding paternal lineage of all Tungusic-speaking populations. To infer the differentiation history of these populations, we studied more sequences and constructed downstream structure of haplogroup C2a-M48-SK1061 with better resolution. In this study, we generated 100 new sequences and co-analyzed 140 sequences of C2a-M48-SK1061 to reconstruct a highly revised phylogenetic tree with age estimates. We also performed the analysis of the geographical distribution and spatial autocorrelation of sub-branches. Dozens of new sub-branches were discovered, many sub-branches were nearly unique for Ewenki, Evens, Oroqen, Xibe, Manchu, Daur, and Mongolian. The topology of these unique sub-branches is the key evidence for understanding the complex evolutionary relationship between different Tungusic-speaking populations. The revised phylogeny provided a clear pattern for the differentiation history of haplogroup C2a-M48-SK1061 in the past 2,000 years. This study showed that the divergence pattern of founder lineage is essential to understanding the differentiation history of populations.

5.
Mol Genet Genomics ; 298(6): 1301-1308, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37498359

RESUMO

OBJECTIVES: Previous studies suggested that the Y-chromosome haplogroups O2-N6-B451-AM01756 and O1a-M119 are two founder lineages of proto-Austronesians at about five thousand years ago. The objective of this study was to investigate the formation of proto-Austronesians from the perspective of the paternal gene pool. MATERIALS AND METHODS: In this study, we developed a highly evised phylogenetic tree with age estimates for haplogroup O2-N6 and early branches of O1a-M119 (M110, F1036, and F819). In addition, we also explored the geographical distribution of eight sub-branches of O2-N6 and O1a-M119, and spatial autocorrelation analysis was conducted for each sub-branch. RESULTS: The paternal lineage combination of proto-Austronesians is a small subset of a diverse gene pool of populations from the mainland of East Asia. The distribution map and results of the spatial autocorrelation analysis suggested that the eastern coastal region of northern China is likely the source of lineage O2-N6 while the coastal region of southeastern China is likely the diffusion center of early branches of O1a-M119. We developed an evolutionary diagram for Austronesians and their ancestors in the past 18,000 years. DISCUSSION: We proposed that the millet farming community in North China is the common ancestor group of the Austronesians and the Han people, while the diverse ancient people in the southeast coastal areas of East Asia form the common ancestor group of the Austronesians and the East Asian mainland population. The demographic history of multiple ancestral groups of the most recent common ancestor group itself in the more ancient period is helpful to understand the deep roots of the genetic components and cultural traditions of Austronesians.


Assuntos
Cromossomos Humanos Y , Genética Populacional , Humanos , Filogeografia , Filogenia , Haplótipos/genética , Cromossomos Humanos Y/genética , Ásia Oriental
6.
Front Genet ; 14: 1139722, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968599

RESUMO

Objectives: Previous studies of archaeology and history suggested that the rise and prosperity of Bronze Age culture in East Asia had made essential contribution to the formation of early state and civilization in this region. However, the impacts in perspective of genetics remain ambiguous. Previous genetic researches indicated the Y-chromosome Q1a1a-M120 and N1a2a-F1101 may be the two most important paternal lineages among the Bronze Age people in ancient northwest China. Here, we investigated the 9,000-years history of haplogroup N1a2a-F1101 with revised phylogenetic tree and spatial autocorrelation analysis. Materials and Methods: In this study, 229 sequences of N1a2a-F1101 were analyzed. We developed a highly-revised phylogenetic tree with age estimates for N1a2a-F1101. In addition, we also explored the geographical distribution of sub-lineages of N1a2a-F1101, and spatial autocorrelation analysis was conducted for each sub-branch. Results: The initial differentiation location of N1a2a-F1101 and its most closely related branch, N1a2b-P43, a major lineage of Uralic-speaking populations in northern Eurasia, is likely the west part of northeast China. After ~4 thousand years of bottleneck effect period, haplgroup N1a2a-F1101 experienced continuous expansion during the Chalcolithic age (~ 4.5 kya to 4 kya) and Bronze age (~ 4 kya to 2.5 kya) in northern China. Ancient DNA evidence supported that this haplogroup is the lineage of ruling family of Zhou Dynasty (~ 3 kya-2.2 kya) of ancient China. Discussion: In general, we proposed that the Bronze Age people in the border area between the eastern Eurasian steppe and northern China not only played a key role in promoting the early state and civilization of China, but also left significant traces in the gene pool of Chinese people.

7.
Hum Genomics ; 17(1): 29, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36973821

RESUMO

BACKGROUND: Non-recombining regions of the Y-chromosome recorded the evolutionary traces of male human populations and are inherited haplotype-dependently and male-specifically. Recent whole Y-chromosome sequencing studies have identified previously unrecognized population divergence, expansion and admixture processes, which promotes a better understanding and application of the observed patterns of Y-chromosome genetic diversity. RESULTS: Here, we developed one highest-resolution Y-chromosome single nucleotide polymorphism (Y-SNP) panel targeted for uniparental genealogy reconstruction and paternal biogeographical ancestry inference, which included 639 phylogenetically informative SNPs. We genotyped these loci in 1033 Chinese male individuals from 33 ethnolinguistically diverse populations and identified 256 terminal Y-chromosomal lineages with frequency ranging from 0.0010 (singleton) to 0.0687. We identified six dominant common founding lineages associated with different ethnolinguistic backgrounds, which included O2a2b1a1a1a1a1a1a1-M6539, O2a1b1a1a1a1a1a1-F17, O2a2b1a1a1a1a1b1a1b-MF15397, O2a2b2a1b1-A16609, O1b1a1a1a1b2a1a1-F2517, and O2a2b1a1a1a1a1a1-F155. The AMOVA and nucleotide diversity estimates revealed considerable differences and high genetic diversity among ethnolinguistically different populations. We constructed one representative phylogenetic tree among 33 studied populations based on the haplogroup frequency spectrum and sequence variations. Clustering patterns in principal component analysis and multidimensional scaling results showed a genetic differentiation between Tai-Kadai-speaking Li, Mongolic-speaking Mongolian, and other Sinitic-speaking Han Chinese populations. Phylogenetic topology inferred from the BEAST and Network relationships reconstructed from the popART further showed the founding lineages from culturally/linguistically diverse populations, such as C2a/C2b was dominant in Mongolian people and O1a/O1b was dominant in island Li people. We also identified many lineages shared by more than two ethnolinguistically different populations with a high proportion, suggesting their extensive admixture and migration history. CONCLUSIONS: Our findings indicated that our developed high-resolution Y-SNP panel included major dominant Y-lineages of Chinese populations from different ethnic groups and geographical regions, which can be used as the primary and powerful tool for forensic practice. We should emphasize the necessity and importance of whole sequencing of more ethnolinguistically different populations, which can help identify more unrecognized population-specific variations for the promotion of Y-chromosome-based forensic applications.


Assuntos
Cromossomos Humanos Y , População do Leste Asiático , Polimorfismo de Nucleotídeo Único , Humanos , China , Cromossomos Humanos Y/genética , População do Leste Asiático/genética , Genética Populacional , Haplótipos , Filogenia
8.
Ann Hum Biol ; 50(1): 123-125, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36803234

RESUMO

We analysed the forensic characteristics and substructure of the Handan Han population based on 36 Y-STR (short tandem repeat) and Y-SNP (single nucleotide polymorphism) markers. The two most dominant haplogroups in Handan Han, O2a2b1a1a1-F8 (17.95%) and O2a2b1a2a1a (21.51%), and their abundant downstream branches, reflected the strong expansion of the precursor of the Hans in Handan. The present results enrich the forensic database and explore the genetic relationships between Handan Han and other neighbouring and/or linguistically close populations, which suggests that the current concise overview of the Han intricate substructure remains oversimplified.


Assuntos
Etnicidade , Genética Populacional , Humanos , Etnicidade/genética , China , Polimorfismo de Nucleotídeo Único , Repetições de Microssatélites/genética , Cromossomos Humanos Y , Frequência do Gene , Haplótipos
9.
Genes (Basel) ; 13(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36292661

RESUMO

In the past two decades, studies of Y chromosomal single nucleotide polymorphisms (Y-SNPs) and short tandem repeats (Y-STRs) have shed light on the demographic history of Central Asia, the heartland of Eurasia. However, complex patterns of migration and admixture have complicated population genetic studies in Central Asia. Here, we sequenced and analyzed the Y-chromosomes of 187 male individuals from Kazakh, Kyrgyz, Uzbek, Karakalpak, Hazara, Karluk, Tajik, Uyghur, Dungan, and Turkmen populations. High diversity and admixture from peripheral areas of Eurasia were observed among the paternal gene pool of these populations. This general pattern can be largely attributed to the activities of ancient people in four periods, including the Neolithic farmers, Indo-Europeans, Turks, and Mongols. Most importantly, we detected the consistent expansion of many minor lineages over the past thousand years, which may correspond directly to the formation of modern populations in these regions. The newly discovered sub-lineages and variants provide a basis for further studies of the contributions of minor lineages to the formation of modern populations in Central Asia.


Assuntos
Cromossomos Humanos Y , Genética Populacional , Humanos , Masculino , Cromossomos Humanos Y/genética , Filogenia , Haplótipos , Ásia
10.
Forensic Sci Int Genet ; 56: 102633, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826721

RESUMO

Sherpa people, one of the high-altitude hypoxic adaptive populations, mainly reside in Nepal and the southern Tibet Autonomous Region. The genetic origin and detailed evolutionary profiles of Sherpas remain to be further explored and comprehensively characterized. Here we analyzed the newly-generated InDel genotype data from 628 Dingjie Sherpas by merging with 4222 worldwide InDel profiles and collected genome-wide SNP data (approximately 600K SNPs) from 1612 individuals in 191 modern and ancient populations to explore and reconstruct the fine-scale genetic structure of Sherpas and their relationships with nearby modern and ancient East Asians based on the shared alleles and haplotypes. The forensic parameters of 57 autosomal InDels (A-InDels) included in our used new-generation InDel amplification system showed that this focused InDel panel is informative and polymorphic in Dingjie Sherpas, suggesting that it can be used as the supplementary tool for forensic personal identification and parentage testing in Dingjie Sherpas. Descriptive findings from the PCA, ADMIXTURE, and TreeMix-based phylogenies suggested that studied Nepal Sherpas showed excess allele sharing with neighboring Tibeto-Burman Tibetans. Furthermore, patterns of allele sharing in f-statistics demonstrated that Nepal Sherpas had a different evolutionary history compared with their neighbors from Nepal (Newar and Gurung) but showed genetic similarity with 2700-year-old Chokhopani and modern Tibet Tibetans. QpAdm/qpGraph-based admixture sources and models further showed that Sherpas, core Tibetans, and Chokhopani formed one clade, which could be fitted as having the main ancestry from late Neolithic Qijia millet farmers and other deep ancestries from early Asians. Chromosome painting profiles and shared IBD fragments inferred from fineSTRUCTURE and ChromoPainter not only confirmed the abovementioned genomic affinity patterns but also revealed the fine-scale genetic microstructures among Sino-Tibetan speakers. Finally, natural-selection signals revealed via iHS, nSL and iHH12 showed natural selection signatures associated with disease susceptibility in Sherpas. Generally, we provided the comprehensive landscape of admixture and evolutionary history of Sherpa people based on the shared alleles and haplotypes from the InDel-based genotype data and high-density genome-wide SNP data. The more detailed genetic landscape of Sherpa people should be further confirmed and characterized via ancient genomes or single-molecule real-time sequencing technology.


Assuntos
Genética Populacional , Polimorfismo de Nucleotídeo Único , Etnicidade/genética , Genômica , Humanos , Tibet
11.
Front Genet ; 12: 725243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650596

RESUMO

Archeologically attested human occupation on the Tibetan Plateau (TP) can be traced back to 160 thousand years ago (kya) via the archaic Xiahe people and 30∼40 kya via the Nwya Devu anatomically modern human. However, the history of the Tibetan populations and their migration inferred from the ancient and modern DNA remains unclear. Here, we performed the first ancient and modern genomic meta-analysis among 3,017 Paleolithic to present-day Eastern Eurasian genomes (2,444 modern individuals from 183 populations and 573 ancient individuals). We identified a close genetic connection between the ancient-modern highland Tibetans and lowland island/coastal Neolithic Northern East Asians (NEA). This observed genetic affinity reflected the primary ancestry of high-altitude Tibeto-Burman speakers originated from the Neolithic farming populations in the Yellow River Basin. The identified pattern was consistent with the proposed common north-China origin hypothesis of the Sino-Tibetan languages and dispersal patterns of the northern millet farmers. We also observed the genetic differentiation between the highlanders and lowland NEAs. The former harbored more deeply diverged Hoabinhian/Onge-related ancestry and the latter possessed more Neolithic southern East Asian (SEA) or Siberian-related ancestry. Our reconstructed qpAdm and qpGraph models suggested the co-existence of Paleolithic and Neolithic ancestries in the Neolithic to modern East Asian highlanders. Additionally, we found that Tibetans from Ü-Tsang/Ando/Kham regions showed a strong population stratification consistent with their cultural background and geographic terrain. Ü-Tsang Tibetans possessed a stronger Chokhopani-affinity, Ando Tibetans had more Western Eurasian related ancestry and Kham Tibetans harbored greater Neolithic southern EA ancestry. Generally, ancient and modern genomes documented multiple waves of human migrations in the TP's past. The first layer of local hunter-gatherers mixed with incoming millet farmers and arose the Chokhopani-associated Proto-Tibetan-Burman highlanders, which further respectively mixed with additional genetic contributors from the western Eurasian Steppe, Yellow River and Yangtze River and finally gave rise to the modern Ando, Ü-Tsang and Kham Tibetans.

12.
Front Genet ; 12: 727821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504517

RESUMO

The evolutionary and admixture history of Han Chinese have been widely discussed via traditional autosomal and uniparental genetic markers [e.g., short tandem repeats, low-density single nucleotide polymorphisms). However, their fine-scale genetic landscapes (admixture scenarios and natural selection signatures) based on the high-density allele/haplotype sharing patterns have not been deeply characterized. Here, we collected and generated genome-wide data of 50 Han Chinese individuals from four populations in Guizhou Province, one of the most ethnolinguistically diverse regions, and merged it with over 3,000 publicly available modern and ancient Eurasians to describe the genetic origin and population admixture history of Guizhou Hans and their neighbors. PCA and ADMIXTURE results showed that the studied four populations were homogeneous and grouped closely to central East Asians. Genetic homogeneity within Guizhou populations was further confirmed via the observed strong genetic affinity with inland Hmong-Mien people through the observed genetic clade in Fst and outgroup f 3 /f 4-statistics. qpGraph-based phylogenies and f 4-based demographic models illuminated that Guizhou Hans were well fitted via the admixture of ancient Yellow River Millet farmers related to Lajia people and southern Yangtze River farmers related to Hanben people. Further ChromoPainter-based chromosome painting profiles and GLOBETROTTER-based admixture signatures confirmed the two best source matches for southwestern Hans, respectively, from northern Shaanxi Hans and southern indigenes with variable mixture proportions in the historical period. Further three-way admixture models revealed larger genetic contributions from coastal southern East Asians into Guizhou Hans compared with the proposed inland ancient source from mainland Southeast Asia. We also identified candidate loci (e.g., MTUS2, NOTCH4, EDAR, ADH1B, and ABCG2) with strong natural selection signatures in Guizhou Hans via iHS, nSL, and ihh, which were associated with the susceptibility of the multiple complex diseases, morphology formation, alcohol and lipid metabolism. Generally, we provided a case and ideal strategy to reconstruct the detailed demographic evolutionary history of Guizhou Hans, which provided new insights into the fine-scale genomic formation of one ethnolinguistically specific targeted population from the comprehensive perspectives of the shared unlinked alleles, linked haplotypes, and paternal and maternal lineages.

14.
Am J Phys Anthropol ; 174(4): 686-700, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33555039

RESUMO

OBJECTIVES: The aim of this research was to explore the origin, diversification, and demographic history of O1a-M119 over the past 10,000 years, as well as its role during the formation of East Asian and Southeast Asian populations, particularly the Han, Tai-Kadai-speaking, and Austronesian-speaking populations. MATERIALS AND METHODS: Y-chromosome sequences (n = 141) of the O1a-M119 lineage, including 17 newly generated in this study, were used to reconstruct a revised phylogenetic tree with age estimates, and identify sub-lineages. The geographic distribution of 12 O1a-M119 sub-lineages was summarized, based on 7325 O1a-M119 individuals identified among 60,009 Chinese males. RESULTS: A revised phylogenetic tree, age estimation, and distribution maps indicated continuous expansion of haplogroup O1a-M119 over the past 10,000 years, and differences in demographic history across geographic regions. We propose several sub-lineages of O1a-M119 as founding paternal lineages of Han, Tai-Kadai-speaking, and Austronesian-speaking populations. The sharing of several young O1a-M119 sub-lineages with expansion times less than 6000 years between these three population groups supports a partial common ancestry for them in the Neolithic Age; however, the paternal genetic divergence pattern is much more complex than previous hypotheses based on ethnology, archeology, and linguistics. DISCUSSION: Our analyses contribute to a better understanding of the demographic history of O1a-M119 sub-lineages over the past 10,000 years during the emergence of Han, Austronesians, Tai-Kadai-speaking populations. The data described in this study will assist in understanding of the history of Han, Tai-Kadai-speaking, and Austronesian-speaking populations from ethnology, archeology, and linguistic perspectives in the future.


Assuntos
Povo Asiático/genética , Cromossomos Humanos Y/genética , Etnicidade/genética , Genética Populacional/métodos , Haplótipos/genética , Antropologia Física , Povo Asiático/classificação , China , Etnicidade/classificação , Humanos , Masculino
15.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33558418

RESUMO

The expansion of anatomically modern humans (AMHs) from Africa around 65,000 to 45,000 y ago (ca. 65 to 45 ka) led to the establishment of present-day non-African populations. Some paleoanthropologists have argued that fossil discoveries from Huanglong, Zhiren, Luna, and Fuyan caves in southern China indicate one or more prior dispersals, perhaps as early as ca. 120 ka. We investigated the age of the human remains from three of these localities and two additional early AMH sites (Yangjiapo and Sanyou caves, Hubei) by combining ancient DNA (aDNA) analysis with a multimethod geological dating strategy. Although U-Th dating of capping flowstones suggested they lie within the range ca. 168 to 70 ka, analyses of aDNA and direct AMS 14C dating on human teeth from Fuyan and Yangjiapo caves showed they derive from the Holocene. OSL dating of sediments and AMS 14C analysis of mammal teeth and charcoal also demonstrated major discrepancies from the flowstone ages; the difference between them being an order of magnitude or more at most of these localities. Our work highlights the surprisingly complex depositional history recorded at these subtropical caves which involved one or more episodes of erosion and redeposition or intrusion as recently as the late Holocene. In light of our findings, the first appearance datum for AMHs in southern China should probably lie within the timeframe set by molecular data of ca. 50 to 45 ka.


Assuntos
Arqueologia , Cavernas/química , DNA Antigo/análise , Fósseis , Sedimentos Geológicos/análise , Migração Humana/história , Datação Radiométrica/métodos , China , História Antiga , Humanos
16.
J Hum Genet ; 66(7): 707-716, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33510364

RESUMO

Western Kazakhstan is populated by three clans totaling 2 million people. Since the clans are patrilineal, the Y-chromosome is the most informative genetic system for tracing their origin. We genotyped 40 Y-SNP and 17 Y-STR markers in 330 Western Kazakhs. High phylogenetic resolution within haplogroup C2a1a2-M48 was achieved by using additional SNPs. Three lines of evidence indicate that the Alimuly and Baiuly clans (but not the Zhetiru clan) have a common founder placed 700 ± 200 years back by the STR data and 500 ± 200 years back by the sequencing data. This supports traditional genealogy claims about the descent of these clans from Emir Alau, who lived 650 years ago and whose lineage might be carried by two-thirds of Western Kazakhs. There is accumulation of specific haplogroups in the subclans representing other lineages, confirming that the clan structure corresponds with the paternal genetic structure of the steppe population.


Assuntos
Cromossomos Humanos Y/genética , Genealogia e Heráldica , Haplótipos/genética , Filogenia , Efeito Fundador , Genótipo , Humanos , Cazaquistão/epidemiologia , Masculino , Polimorfismo de Nucleotídeo Único/genética
17.
Am J Hum Biol ; 33(3): e23486, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32851723

RESUMO

OBJECTIVES: The origin and differentiation of Austronesian populations and their languages have long fascinated linguists, archeologists, and geneticists. However, the founding process of Austronesians and when they separated from their close relatives, such as the Daic and Austro-Asiatic populations in the mainland of Asia, remain unclear. In this study, we explored the paternal origin of Malays in Southeast Asia and the early differentiation of Austronesians. MATERIALS AND METHODS: We generated whole Y-chromosome sequences of 50 Malays and co-analyzed 200 sequences from other Austronesians and related populations. We generated a revised phylogenetic tree with time estimation. RESULTS: We identified six founding paternal lineages among the studied Malays samples. These founding lineages showed a surprisingly coincident expansion age at 5000 to 6000 years ago. We also found numerous mostly close related samples of the founding lineages of Malays among populations from Mainland of Asia. CONCLUSION: Our analyses provided a refined phylogenetic resolution for the dominant paternal lineages of Austronesians found by previous studies. We suggested that the co-expansion of numerous founding paternal lineages corresponds to the initial differentiation of the most recent common ancestor of modern Austronesians. The splitting time and divergence pattern in perspective of paternal Y-chromosome evidence are highly consistent with the previous theories of ethnologists, linguists, and archeologists.


Assuntos
Cromossomos Humanos Y/genética , Pool Gênico , Migração Humana , Herança Paterna , Sudeste Asiático , Humanos , Filogenia
18.
Am J Phys Anthropol ; 174(2): 363-374, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33241578

RESUMO

OBJECTIVES: Subbranches of Y-chromosome haplogroup C2a-L1373 are founding paternal lineages in northern Asia and Native American populations. Our objective was to investigate C2a-L1373 differentiation in northern Asia and its implications for Native American origins. MATERIALS AND METHODS: Sequences of rare subbranches (n = 43) and ancient individuals (n = 37) of C2a-L1373 (including P39 and MPB373), were used to construct phylogenetic trees with age estimation by BEAST software. RESULTS: C2a-L1373 expanded rapidly approximately 17.7,000-14.3,000 years ago (kya) after the last glacial maximum (LGM), generating numerous sublineages which became founding paternal lineages of modern northern Asian and Native American populations (C2a-P39 and C2a-MPB373). The divergence pattern supports possible initiation of differentiation in low latitude regions of northern Asia and northward diffusion after the LGM. There is a substantial gap between the divergence times of C2a-MPB373 (approximately 22.4 or 17.7 kya) and C2a-P39 (approximately 14.3 kya), indicating two possible migration waves. DISCUSSION: We discussed the decreasing time interval of "Beringian standstill" (2.5 ky or smaller) and its reduced significance. We also discussed the multiple possibilities for the peopling of the Americas: the "Long-term Beringian standstill model," the "Short-term Beringian standstill model," and the "Multiple waves of migration model." Our results support the argument from ancient DNA analyses that the direct ancestor group of Native Americans is an admixture of "Ancient Northern Siberians" and Paleolithic communities from the Amur region, which appeared during the post-LGM era, rather than ancient populations in greater Beringia, or an adjacent region, before the LGM.


Assuntos
Indígena Americano ou Nativo do Alasca , Povo Asiático , Cromossomos Humanos Y/genética , Migração Humana/história , Antropologia Física , Ásia Setentrional , Povo Asiático/classificação , Povo Asiático/genética , Povo Asiático/história , História Antiga , Humanos , Masculino , América do Norte , Filogenia , Indígena Americano ou Nativo do Alasca/classificação , Indígena Americano ou Nativo do Alasca/genética , Indígena Americano ou Nativo do Alasca/história
19.
Am J Hum Biol ; 33(2): e23462, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32657006

RESUMO

OBJECTIVES: Haplogroup C2a-M48 is the predominant paternal lineage of Tungusic-speaking populations, one of the largest population groups in Siberia. Up until now, the origins and dispersal of Tungusic-speaking populations have remained unclear. In this study, the demographic history of Tungusic-speaking populations was explored using the phylogenetic analysis of haplogroup C2a-M86, the major subbranch of C2a-M48. MATERIALS AND METHODS: In total, 18 newly generated Y chromosome sequences from C2a-M48 males and 20 previously available Y-chromosome sequences from this haplogroup were analyzed. A highly revised phylogenetic tree of haplogroup C2a-M86 with age estimates was reconstructed. Frequencies of this lineage in the literature were collected and a comprehensive analysis of this lineage in 13 022 individuals from 245 populations in Eurasia was performed. RESULTS: The distribution map of C2a-M48 indicated the most probable area of origin and diffusion route of this paternal lineage in North Eurasia. Most C2a-M86 samples from Tungusic-speaking populations belonged to the sublineage C2a-F5484, which emerged about 3300 years ago. We identified six unique sublineages corresponding to the Manchu, Evenks, Evens, Oroqen, and Daurpopulations; these sublineages diverged gradually over the past 1900 years. Notably, we observed a clear north-south dichotomous structure for sublineages derived from C2a-F5484, consistent with the internal north-south divergence of Tungusic languages and ethnic groups. CONCLUSIONS: We identified the important founding paternal haplogroup, C2a-F5484, for Tungusic-speaking populations as well as numerous unique subgroups of this haplogroup. We propose that the timeframe for the divergence of C2a-F5484 corresponds with the early differentiation of ancestral Tungusic-speaking populations.


Assuntos
Cromossomos Humanos Y/genética , Etnicidade/genética , Migração Humana , Filogenia , Haplótipos , Humanos , Masculino , Sibéria/etnologia
20.
Ann Hum Biol ; 48(1): 49-55, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33191788

RESUMO

BACKGROUND: In recent decades, considerable attention has been paid to exploring the population genetic characteristics of Han Chinese, mainly documenting a north-south genetic substructure. However, the central Han Chinese have been largely underrepresented in previous studies. AIM: To infer a comprehensive understanding of the homogenisation process and population history of Han Chinese. SUBJECTS AND METHODS: We collected samples from 122 Han Chinese from seven counties of Hubei province in central China and genotyped 534,000 genome-wide SNPs. We compared Hubei Han with both ancient and present-day Eurasian populations using Principal Component Analysis, ADMIXTURE, f statistics, qpWave and qpAdm. RESULTS: We observed Hubei Han Chinese are at a genetically intermediate position on the north-south Han Chinese cline. We have not detected any significant genetic substructure in the studied groups from seven different counties. Hubei Han show significant evidence of genetic admixture deriving about 63% of ancestry from Tai-Kadai or Austronesian-speaking southern indigenous groups and 37% from Tungusic or Mongolic related northern populations. CONCLUSIONS: The formation of Han Chinese has involved extensive admixture with Tai-Kadai or Austronesian-speaking populations in the south and Tungusic or Mongolic speaking populations in the north. The convenient transportation and central location of Hubei make it the key region for the homogenisation of Han Chinese.


Assuntos
Etnicidade/genética , Genótipo , Migração Humana , Polimorfismo de Nucleotídeo Único , China , Humanos , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA