Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
J Hazard Mater ; 480: 136163, 2024 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-39418906

RESUMO

The impacts of polystyrene nanoplastics (PS NPs) with amino functional groups on sludge anaerobic digestion process and the underlying microbial feedbacks remains unclear. Herein, PS NPs coated with and without amino functional groups were employed to explore their impacts on the sludge digestion performance. Experimental results showed that aminated PS NPs (PS-NH2) deteriorated the methane yield and hydrolysis rate. The Derjaguin-Landau-Verwey-Overbeek theory analysis suggested that the PS-NH2 decreased the interaction energy barrier, making it easier to contact with sludge and disrupting the structure of extracellular polymeric substances. Metagenomic analysis showed that the abundance of functional microbes (e.g., Longilinea, Leptolinea, and Methanosarcina) decreased, accompanied with lower network complexity and fewer keystone taxa. Molecular docking revealed that PS-NH2 occupy the antioxidant enzyme active binding sites through hydrogen bonding and hydrophobic interactions, impairing degradation of reactive oxygen species. The severe intracellular oxidative stress up-regulated genes associated with quorum sensing (e.g., luxI and luxR) and protein biosynthesis (e.g., algA, trpG and trpE), and further inducing compact tryptophan-like proteins as a defense against NPs. These findings provide new understanding of the toxic effects from PS-NH2 in biological systems and offer valuable insights into the regulation strategies aimed at alleviating NPs inhibition.

2.
Biochim Biophys Acta Mol Basis Dis ; 1871(1): 167528, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39366644

RESUMO

Peroxisome proliferator-activated receptor gamma coactivators 1ß (PGC1ß) is essential in mitochondrial oxidative phosphorylation and alternative macrophages activation. To determine the contribution of PGC1ß in obesity induced inflammation, Ppargc1b (PGC1ß coding gene) myeloid conditional knockout mice (cKO) were fed with high fat diet (HFD) to examine the following effects. We found that HFD-fed cKO mice gained more fat with increased serum triglyceride (TG), low density lipoprotein (LDL), adiponectin, and leptin. Adipogenesis was stimulated while lipolysis was retarded in HFD-fed cKO mice adipose. Gluconeogenesis, lipogenesis, and fatty acid uptake were provoked while lipolysis was inhibited in HFD-fed cKO liver. Serum alanine transaminase (ALT) level, indicating fatty liver, also increased. Inflammatory cytokine including tumor necrosis factor-α (TNF-α), IL-1ß, and IL-6 was elevated in cKO mice, accompanied with glucose intolerant and insulin resistance. Energy expenditure was decreased in HFD-fed cKO mice. Further evidence showed that cKO macrophages were prone to repolarize into M1 inflammatory type in vitro. In addition to mitochondrial biogenesis and oxidative respiration, PGC1ß also modulated mitochondrial fission and cytosolic mitochondrial DNA (mtDNA) release, contributing to NLR family pyrin domain containing 3 (Nlrp3) inflammasome priming and activation. Treatment of mitochondrial fission inhibitor abolished the increased mRNA levels of Nlrp3 and IL-1ß induced by PGC1ß depletion. Nlrp3 knockdown restored the induced IL-1ß mRNA expression by PGC1ß deficiency. Myeloid PGC1ß regulated adipocyte adipogenesis and lipolysis. PGC1ß loss-of-function and mtDNA abundance correlated with obesity and diabetes. These observations uncovered the protective role of PGC1ß against obesity induced systemic inflammation. Enhancing myeloid PGC1ß function may be a potential strategy for the intervention of obesity and related diseases.

3.
J Orthop Surg Res ; 19(1): 610, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342371

RESUMO

BACKGROUND: Osteoporosis (OP) is a systemic bone disease characterized by reduced bone mass and deterioration of bone microstructure, leading to increased bone fragility. Platelets can take up and release cytokines, and a high platelet count has been associated with low bone density. Obesity is strongly associated with OP, and adipose tissue can influence platelet function by secreting adipokines. However, the biological relationship between these factors remains unclear. METHODS: We conducted differential analysis to identify OP platelet-related plasma proteins. And, making comprehensive analysis, including functional enrichment, protein-protein interaction network analysis, and Friends analysis. The key protein, Tetranectin (TNA/CLEC3B), was identified through screening. Then, we analyzed TNA's potential roles in osteogenic and adipogenic differentiation using multiple RNA-seq data sets and validated its effect on osteoclast differentiation and bone resorption function through in vitro experiments. RESULTS: Six OP-platelet-related proteins were identified via differential analysis. Then, we screened the key protein TNA, which was found to be highly expressed in adipose tissue. RNA-seq data suggested that TNA may promote early osteoblast differentiation. In vitro experiments showed that knockdown of TNA expression significantly increased the expression of osteoclast markers, thereby promoting osteoclast differentiation and bone resorption. CONCLUSIONS: We identified TNA as a secreted protein that inhibits osteoclast differentiation and bone resorption. While, it potentially promoted early osteoblast differentiation from bioinformatic results. TNA may play a role in bone metabolism through the adipose-bone axis.


Assuntos
Tecido Adiposo , Biomarcadores , Diferenciação Celular , Lectinas Tipo C , Osteoclastos , Osteoporose , Biomarcadores/metabolismo , Tecido Adiposo/metabolismo , Humanos , Osteoporose/metabolismo , Osteoporose/genética , Diferenciação Celular/fisiologia , Osteoclastos/metabolismo , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Osso e Ossos/metabolismo , Osteogênese/fisiologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/genética , Osteoblastos/metabolismo , Adipogenia/fisiologia , Adipogenia/genética , Animais , Plaquetas/metabolismo
4.
Water Res ; 263: 122180, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39106620

RESUMO

Water occurrence states in sewage sludge, influenced by sludge physicochemical properties, are crucial for sludge dewaterability and have recently been regarded as a research hotspot. Here, the multifold characteristics of sludge flocs during hydrothermal treatment, including rheological properties, solid-water interfacial interactions, and the polarity distribution and molecular structure of extracellular polymeric substances (EPS), were systematically investigated, and the impact of these characteristics on sludge dewaterability was explored in depth. Hydrothermal treatment at 80 °C and 100 °C induced the conversion of free water into bound water, while an increase in temperature to 180 °C resulted in a significant decrease in bound water content, approximately 4-fold lower than at 100 °C. In addition to the conventional view of decreased sludge surface hydrophilicity at high temperatures, the decline in bound water was associated with the reduction in sludge apparent viscosity. XAD resin fractionation identified the hydrophobic/hydrophilic EPS (HPO-/HPI) ratio as an important factor determining water occurrence states. Especially, hydrolysis of HPI-related hydrophilic proteins and subsequent increase in HPO-related tryptophan-like substances played a dominant role in reducing sludge viscosity and facilitating the release of bound water. Protein conformational analysis revealed that the disruption of α-helix structures and disulfide bonds significantly reduced EPS water-holding capacity, providing strong evidence for the potential of targeting these dense structure units to enhance sludge dewaterability. These findings provide a holistic understanding of multidimensional drivers of water occurrence states in sludge, and guide directions for optimizing sludge treatment efficiency through EPS modification.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Esgotos/química , Matriz Extracelular de Substâncias Poliméricas/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Eliminação de Resíduos Líquidos , Viscosidade
5.
Sci Total Environ ; 951: 175511, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147043

RESUMO

Aggravated accumulation of emerging micropollutants (EMs) in aquatic environments, especially after COVID-19, raised significant attention throughout the world for safety concerns. This article reviews the sources and occurrence of 25 anti-COVID-19 related EMs in wastewater. It should be pointed out that the concentration of anti-COVID-19 related EMs, such as antivirals, plasticizers, antimicrobials, and psychotropic drugs in wastewater increased notably after the pandemic. Furthermore, the ecotoxicity, ecological, and health risks of typical EMs before and after COVID-19 were emphatically compared and analyzed. Based on the environmental health prioritization index method, the priority control sequence of typical EMs related to anti-COVID-19 was identified. Lopinavir (LPV), venlafaxine (VLX), di(2-ethylhexyl) phthalate (DEHP), benzalkonium chloride (BAC), triclocarban (TCC), di-n-butyl phthalate (DBP), citalopram (CIT), diisobutyl phthalate (DIBP), and triclosan (TCS) were identified as the top-priority control EMs in the post-pandemic period. Besides, some insights into the toxicity and risk assessment of EMs were also provided. This review provides direction for proper understanding and controlling the EMs pollution after COVID-19, and is of significance to evaluate objectively the environmental and health impacts induced by COVID-19.


Assuntos
COVID-19 , Pandemias , Águas Residuárias , Poluentes Químicos da Água , COVID-19/epidemiologia , Poluentes Químicos da Água/análise , Humanos , Medição de Risco , Monitoramento Ambiental , SARS-CoV-2 , Antivirais
6.
J Environ Manage ; 365: 121633, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955044

RESUMO

The development of sustainable advanced energy conversion technologies and efficient pollutant treatment processes is a viable solution to the two global crises of the lack of non-renewable energy resources and environmental harm. In recent years, the interaction of biological and chemical oxidation units to utilize biomass has been extensively studied. Among these systems, bio-electro-Fenton (BEF) and photo-bio-electro-Fenton (PBEF) systems have shown prospects for application due to making rational and practical conversion and use of energy. This review compared and analyzed the electron transfer mechanisms in BEF and PBEF systems, and systematically summarized the techniques for enhancing system performance based on the generation, transfer, and utilization of electrons, including increasing the anode electron recovery efficiency, enhancing the generation of reactive oxygen species, and optimizing operational modes. This review compared the effects of different methods on the electron flow process and fully evaluated the benefits and drawbacks. This review may provide straightforward suggestions and methods to enhance the performance of BEF and PBEF systems and inspire the reader to explore the generation and utilization of sustainable energy more deeply.


Assuntos
Oxirredução , Peróxido de Hidrogênio/química , Ferro/química , Espécies Reativas de Oxigênio , Biomassa
7.
Bioresour Technol ; 406: 130987, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885724

RESUMO

Biochar has been proved to improve methane production in high solids anaerobic co-digestion (HS-AcoD) of dewatered sludge (DS) and food waste (FW), but its potential mechanism for simultaneous methane production and phosphorus (P) transformation has not been sufficiently revealed. Results showed that the optimal preparation temperature and dosage of sludge-based biochar were selected as 300 °C and 0.075 g·g-1, respectively. Under this optimized condition, the methane production of the semi-continuous reactor increased by 54%, and the active phosphorus increased by 18%. The functional microorganisms, such as Methanosarcina, hydrogen-producing, sulfate-reducing, and iron-reducing bacteria, were increased. Metabolic pathways associated with sulfate reduction and methanogenesis, especially hydrogenotrophic methanogenesis, were enhanced, which in turn promoted methanogenesis and phosphorus transformation and release. This study provides theoretical support for simultaneously recovery of carbon and phosphorus resources from DS and FW using biochar.


Assuntos
Reatores Biológicos , Carvão Vegetal , Metano , Fósforo , Esgotos , Metano/metabolismo , Esgotos/microbiologia , Carvão Vegetal/química , Anaerobiose , Alimentos , Perda e Desperdício de Alimentos
8.
Water Res ; 260: 121963, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38924806

RESUMO

The addition of composite conductive materials is being increasingly recognized as a promising strategy to enhance anaerobic digestion (AD) performance. However, the influence of these materials on protein hydrolysis has been poorly documented. Here, a novel magnetic biochar derived from oil sludge and straw was synthesized using different iron sources and successfully applied in sludge AD. Experimental results revealed that magnetic biochar modified by Fe2+ exhibited excellent electron transfer capacity, moderate magnetization, diverse functional groups (e.g. C=O, C-O=O-), and abundant iron distribution. These characteristics significantly enhanced the hydrolysis of tryptophan-like components, leading to increased methane production (144.44 mL gVS-1vs 79.72 mL gVS-1 in the control test). Molecular docking analysis revealed that the binding of magnetic biochar related Fe2+ and Fe3+, onto sludge proteins via hydrogen bond played a key role in promoting subsequent protein hydrolysis. Additionally, the noteworthy conservation of protein structures from α-helix and ß-sheet to random coil, along with the breakdown of the amide I-associated C=O group and amide III-related CN and NH bonds following the addition of magnetic biochar, accelerated the degradation of sludge protein. Observation of variations in protease activity, coenzyme F420, electron transfer system (ETS), and conductivity within the AD systems, particularly the enrichment of Methanospirillum and Methanosaeta archaea, as well as the Petrimonas, Comamonas, and Syntrophomonas bacteria, suggested that magnetic biochar facilitated a conducive environment by improving hydrolysis-acidification and the direct interspecies electron transfer (DIET) process for acetoclastic methanogens. Moreover, metabolic pathways further proved that tryptophan metobalism and acetoclastic methanogenesis were both facilitated by magnetic biochar. This study provides an in-depth understanding of the impact of magnetic biochar on protein hydrolysis in sewage sludge AD.


Assuntos
Carvão Vegetal , Esgotos , Esgotos/microbiologia , Esgotos/química , Carvão Vegetal/química , Anaerobiose , Hidrólise , Simulação de Acoplamento Molecular , Proteínas/química , Proteínas/metabolismo
9.
J Hazard Mater ; 474: 134803, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850931

RESUMO

The release of sludge-derived heavy metals (HMs) to soil and their subsequent migration into groundwater poses a significant challenge for safe and low-carbon sludge land application. This study developed a predictive framework to simulate 60-year sludge land application, evaluating the risk of HMs pollution in the soil-groundwater environment and assessing the influence of soil and water properties. HYDRUS-2D simulations revealed that highly mobile Cu, Ni, and Zn penetrated a 10 m soil layer over a 60-year period, contributing to groundwater pollution. In contrast, Cr was easily sequestered within the topsoil layer after 5-years continuous operation. The non-equilibrium parameter α could serve as an indicator for assessing their potential risk. Furthermore, the limited soil adsorption sites for Pb (f = 0.02772) led to short-term (1-year) groundwater pollution at a 0.5 m-depth. Bayesian Networks model outcomes indicated that humic-like organics crucially influenced HMs transformation, enhancing the desorption of Cd, Cu, Ni, Pb, and Zn, while inhibiting the desorption for Cr. Additionally, electrical conductivity promoted the release of most HMs, in contrast to the Mn mineralogy in soil. This study bridges the gap between the macro-level HMs migration trends and the micro-level adsorption-desorption characteristics, providing guidance for the safe land application of sewage sludge. ENVIRONMENTAL IMPLICATION: This study introduces a framework integrating HYDRUS-2D simulations with Bayesian Networks to assess the risks of groundwater pollution by heavy metals (HMs) over a 60-year sludge application. Sludge-derived Cu, Ni, and Zn are found to penetrate soil up to 10 m and exceed safety limits, with the non-equilibrium parameter α serving as an indicator for pollution risk. The importance of nutrients from sludge-amended soil for the transformation of HMs in the subsurface environment highlights the need for enhanced sludge management, specifically through more detailed regulation of nutrient composition. These findings contribute to developing precise strategies for the long-term sludge land application.

10.
Bioresour Technol ; 400: 130678, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588784

RESUMO

Proteins and carbohydrates are important organics in waste activated sludge, and greatly affect methane production and microbial community composition in anaerobic digestion systems. Here, a series of co-substrates with different molecular weight were applied to investigate the interactions between microbial dynamics and the molecular weight of co-substrates. Biochemical methane production assays conducted in batch co-digesters showed that feeding high molecular weight protein and carbohydrate substrates resulted in higher methane yield and production rates. Moreover, high-molecular weight co-substrates increased the microbial diversity, enriched specific microbes including Longilinea, Anaerolineaceae, Syner-01, Methanothrix, promoted acidogenic and acetoclastic methanogenic pathways. Low-molecular weight co-substrates favored the growth of JGI-0000079-D21, Armatimonadota, Methanosarcina, Methanolinea, and improved hydrogenotrophic methanogenic pathway. Besides, Methanoregulaceae and Methanolinea were indicators of methane yield. This study firstly revealed the complex interactions between co-substrate molecular weight and microbial communities, and demonstrated the feasibility of adjusting co-substrate molecular weight to improve methane production process.


Assuntos
Metano , Peso Molecular , Esgotos , Metano/metabolismo , Esgotos/microbiologia , Anaerobiose , Redes e Vias Metabólicas , Reatores Biológicos , Bactérias/metabolismo
11.
Sci Total Environ ; 923: 171422, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432365

RESUMO

Throughout the entire process of sludge treatment and disposal, it is crucial to explore stable and efficient techniques to improve sludge dewaterability, which can facilitate subsequent resource utilization and space and cost savings. Traditional Fenton oxidation has been widely researched to enhance the performance of sludge dewaterability, which was limited by the additional energy input and the instabilities of Fe2+ and H2O2. To reduce the consumption of energy and chemicals and further break the rate-limiting step of the iron cycle, a novel and feasible method that constructed microbial fuel cell powered electro-Fenton systems (MFCⓅEFs) with ferrite and biochar electrode (MgFe2O4@BC/CF) was successfully demonstrated. The MFCⓅEFs with MgFe2O4@BC/CF electrode achieved specific resistance filtration and sludge cake water content of 2.52 × 1012 m/kg and 66.54 %. Cellular structure and extracellular polymeric substances (EPS) were disrupted, releasing partially bound water and destroying hydrophilic structures to facilitate sludge flocs aggregation, which was attributed to the oxidation of hydroxyl radicals. The consistent electron supply supplied by MFCⓅEFs and catalytically active sites on the surface of the multifunctional functional group electrode was responsible for producing more hydroxyl radicals and possessing a better oxidizing ability. The study provided an innovative process for sludge dewaterability improvement with high efficiency and low energy consumption, which presented new insights into the green treatment of sludge.


Assuntos
Fontes de Energia Bioelétrica , Esgotos , Esgotos/química , Peróxido de Hidrogênio/química , Ferro/química , Água/química , Oxirredução , Radical Hidroxila , Eliminação de Resíduos Líquidos/métodos
12.
Water Res ; 254: 121438, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38467096

RESUMO

The chemical characteristics of extracellular polymeric substances (EPS) of anammox bacteria (AnAOB) play a crucial role in the rapid enrichment of AnAOB and the stable operation of wastewater anammox processes. To clarify the influential mechanisms of sludge EPS on AnAOB aggregation, multiple parameters, including the polarity distribution, composition, and molecular structure of EPS, were selected, and their quantitative relationship with AnAOB aggregation was analyzed. Compared to typical anaerobic sludge (anaerobic floc and granular sludge), the anammox sludge EPS exhibited higher levels of tryptophan-like substances (44.82-56.52 % vs. 2.57-39.81 %), polysaccharides (40.02-53.49 mg/g VSS vs. 30.22-41.69 mg/g VSS), and protein structural units including α-helices (20.70-23.98 % vs. 16.48-19.32 %), ß-sheets (37.43-42.98 % vs. 25.78-36.72 %), and protonated nitrogen (Npr) (0.065-0.122 vs. 0.017-0.061). In contrast, it had lower contents of ß-turns (20.95-27.39 % vs. 28.17-39.04 %). These biopolymers were found to originate from different genera of AnAOB. Specifically, the α-helix-rich proteins were mainly derived from Candidatus Kuenenia, whereas the extracellular proteins related to tryptophan and Npr were closely associated with Candidatus Brocadia. Critically, these EPS components could drive anammox aggregation through interactions. Substantial amounts of tryptophan-like substances facilitated the formation of ß-sheet structures and the exposure of internal hydrophobic clusters, which benefited the anammox aggregation. Meanwhile, extracellular proteins with high Npr content played a pivotal role in the formation of mixed protein-polysaccharide gel networks with the electronegative regions of polysaccharides, which could be regarded as the key component in the maintenance of anammox sludge stability. These findings provide a comprehensive understanding of the multifaceted roles of EPS in driving anammox aggregation and offer valuable insights into the development of EPS regulation strategies aimed at optimizing the anammox process.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Esgotos/química , Triptofano , Estrutura Molecular , Oxidação Anaeróbia da Amônia , Proteínas , Bactérias , Polissacarídeos , Reatores Biológicos , Nitrogênio , Oxirredução
13.
J Environ Manage ; 354: 120268, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364546

RESUMO

The combined process of biochar (BC) and potassium ferrate (PF) offers a fascinating technique for efficient dewatering of digestate. However, the effects of BC/PF treatment on the dewaterability and mechanisms of FWD are still unknown. This study aimed to reveal the impact mechanisms of BC/PF treatment on digestate dewatering performance. Experimental results indicated that BC/PF treatment significantly enhanced the dewaterability of digestate, with the minimum specific resistance to filtration of (1.05 ± 0.02) × 1015 m·kg-1 and water content of 57.52 ± 0.51% being obtained at the concentrations of 0.018 g·g-1 total solid (TS) BC300 and 0.20 g·g-1 TS PF, which were 8.60% and 13.59% lower than PF treatment, respectively. BC/PF treatment proficiently reduced the fractal dimension, bound water content, apparent viscosity, and gel-like network structure strength of digestate, as well as increased the floc size and zeta potential of digestate. BC/PF treatment promoted the conversion of extracellular polymeric substances (EPS) fractions from inner EPS to soluble EPS, increased the fluorescence intensity of the dissolved compounds, and enhanced the hydrophobicity of proteins. Mechanisms investigations showed that BC/PF enhanced dewatering through non-reactive oxygen species pathways, i.e., via strong oxidative intermediate irons species Fe(V)/Fe(IV). BC/PF treatment enhanced the solubilization of nutrients, the inactivation of fecal coliforms, and the mitigation of heavy metal toxicity. The results suggested that BC/PF treatment is an effective digestate dewatering technology which can provide technological supports to the closed-loop treatment of FWD.


Assuntos
Carvão Vegetal , Perda e Desperdício de Alimentos , Compostos de Ferro , Ferro , Compostos de Potássio , Eliminação de Resíduos , Alimentos , Esgotos/química , Água/química , Eliminação de Resíduos Líquidos/métodos
14.
J Hazard Mater ; 466: 133552, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246061

RESUMO

Increasing occurrence of heavy metals (HMs) in sewage sludge threatens its widespread land utilization in China due to its potential impact on nutrient cycling in soil, requiring a better understanding of HM-induced impacts on nitrification. Herein, lab-scale experiments were conducted over 185-day, evaluating the effect of sludge-derived chromium (Cr3+), nickel (Ni2+), and lead (Pb2+) on soil nitrification at different concentrations. Quantitative polymerase chain reaction and linear regression results revealed an inhibitory sequence of gene abundance by HMs' labile fraction: ammonia-oxidizing bacteria (AOB)-ammonia monooxygenase (amoA)> nitrite oxidoreductase subunit alpha (nxrA)> nitrite oxidoreductase subunit beta (nxrB). The toxicity of HMs' incremental labile fraction decreased in the order of Ni2+>Cr3+>Pb2+, with respective threshold values of 5.01, 24.03 and 38.42 mg·kg-1. Furthermore, extending incubation time reduced HMs inhibition on ammonia oxidation, mainly related to their fraction bound to carbonate minerals. Random Forest analysis, variation partitioning analysis, and Mantel test indicated that soil physicochemical properties primarily affected nitrification genes, especially in the test of Cr3+ on AOB-amoA, nxrA, nxrB, Ni2+ for complete ammonia-oxidizing bacteria-amoA, and Pb2+ for nxrA and nxrB. These findings underline the importance of labile HMs fractions and soil physicochemical properties to nitrification, guiding the establishment of HM control standards for sludge utilization.


Assuntos
Bactérias , Metais Pesados , Bactérias/metabolismo , Archaea/metabolismo , Nitrificação , Solo/química , Esgotos/química , Cromo/toxicidade , Cromo/metabolismo , Níquel , Chumbo/metabolismo , Nitritos/metabolismo , Amônia/metabolismo , Oxirredução , Oxirredutases/metabolismo , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Microbiologia do Solo
15.
J Hazard Mater ; 464: 132963, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976850

RESUMO

A comprehensive study was conducted to investigate how ultraviolet (UV) irradiation combined with electrochemistry (EC) can efficiently remove human body fluids (HBFs) related pollutants, such as urea/creatinine/hippuric acid, from swimming pool water (SPW). In comparison with the chlorination, UV, EC, and UV/chlorine treatments, the EC/UV treatment exhibited the highest removal rates for these typical pollutants (TPs) from HBFs in synthetic SPW. Specifically, increasing the operating current of the EC/UV process from 20 to 60 mA, as well as NaCl content from 0.5 to 3.0 g/L, improved urea and creatinine degradation while having no influence on hippuric acid. In contrast, EC/UV process was resilient to changes in water parameters (pH, HCO3-, and actual water matrix). Urea removal was primarily attributable to reactive chlorine species (RCS), whereas creatinine and hippuric acid removal were primarily related to hydroxyl radical, UV photolysis, and RCS. In addition, the EC/UV procedure can lessen the propensity for creatinine and hippuric acid to generate disinfection by-products. We can therefore draw the conclusion that the EC/UV process is a green and efficient in-situ technology for removing HBFs related TPs from SPW with the benefits of needless chlorine-based chemical additive, easy operation, continuous disinfection efficiency, and fewer byproducts production.


Assuntos
Líquidos Corporais , Piscinas , Poluentes Químicos da Água , Purificação da Água , Humanos , Cloro/química , Creatinina , Desinfecção/métodos , Raios Ultravioleta , Oxirredução , Halogenação , Líquidos Corporais/química , Água , Ureia , Poluentes Químicos da Água/química , Purificação da Água/métodos
16.
Sci Rep ; 13(1): 19560, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949959

RESUMO

Osteoporosis is a common bone disease characterized by loss of bone mass, reduced bone strength, and deterioration of bone microstructure. ROS-induced oxidative stress plays an important role in osteoporosis. However, the biomarkers and molecular mechanisms of oxidative stress are still unclear. We obtained the datasets from the Gene Expression Omnibus (GEO) database, and performed differential analysis, Venn analysis, and weighted correlation network analysis (WGCNA) analysis out the hub genes. Then, the correlation between inflammatory factors and hub genes was analyzed, and a Mendelian randomization (MR) analysis was performed on cytokines and osteoporosis outcomes. In addition, "CIBERSORT" was used to analyze the infiltration of immune cells and single-cell RNA-seq data was used to analyze the expression distribution of hub genes and cell-cell communications. Finally, we collected human blood samples for RT-qPCR and Elisa experiments, the miRNA-mRNA network was constructed using the miRBase database, the 3D structure was predicted using the RNAfold, Vfold3D database, and the drug sensitivity analysis was performed using the RNAactDrug database. We obtained three differentially expressed genes associated with oxidative stress: DBH, TAF15, and STAT4 by differential, WGCNA clustering, and Venn screening analyses, and further analyzed the correlation of these 3 genes with inflammatory factors and immune cell infiltration and found that STAT4 was significantly and positively correlated with IL-2. Single-cell data analysis showed that the STAT4 gene was highly expressed mainly in dendritic cells and monocytes. In addition, the results of RT-qPCR and Elisa experiments verified that the expression of STAT4 was consistent with the previous analysis, and a significant causal relationship between IL-2 and STAT4 SNPs and osteoporosis was found by Mendelian randomization. Finally, through miRNA-mRNA network and drug sensitivity analysis, we analyzed to get Palbociclib/miR-141-3p/STAT4 axis, which can be used for the prevention and treatment of osteoporosis. In this study, we proposed the Palbociclib/miR-141-3p/STAT4 axis for the first time and provided new insights into the mechanism of oxidative stress in osteoporosis.


Assuntos
MicroRNAs , Osteoporose , Humanos , Interleucina-2 , Osteoporose/genética , Biologia Computacional , MicroRNAs/genética , RNA Mensageiro , Fator de Transcrição STAT4
17.
Sci Total Environ ; 901: 166551, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37633377

RESUMO

Microplastics are ubiquitous in the natural environment, which inevitably affect the relevant biochemical process. Nevertheless, the knowledge about the impacts of microplastics on organics transformation and corresponding microbial metabolism response in anaerobic environment is limited. Here, polystyrene (PS) microplastics were selected as model microplastics to explore their potential impacts on organics transformation, microbial community and metabolic pathway during sludge anaerobic digestion system operation. The results indicated that the PS microplastics exhibited the dose-dependent effects on methane production, i.e., the additive of 20-40 particles/g TS of PS microplastics improved the maximum methane yield by 3.38 %-8.22 %, whereas 80-160 particles/g TS additive led to a 4.78 %-11.04 % declining. Overall, PS microplastics facilitated the solubilization and hydrolysis of sludge, but inhibited the acidogenesis process. Key functional enzyme activities were stimulated under low PS microplastics exposure, whereas were almost severely inhibited due to the increased oxidative stress induced from excess PS microplastics. Microbial community and further metabolic analysis indicated that low PS microplastics improved the acetotrophic and hydrogenotrophic methanogenesis, while a high level of PS microplastics shifted methanogenesis from acetotrophic to hydrogenotrophic pathway. Further analysis showed that the reacted PS microplastics exhibited greater toxicity and ecological than the raw PS microplastics due to that they are more likely to adsorb contaminants. These findings revealed the dosage-dependent relationships between microplastics and organics transformation process in anaerobic environments, providing new insights for assessing the impact of PS microplastics on sludge anaerobic digestion.


Assuntos
Microbiota , Esgotos , Microplásticos/toxicidade , Poliestirenos/toxicidade , Plásticos/toxicidade , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Metano , Redes e Vias Metabólicas
18.
Environ Res ; 234: 116589, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423354

RESUMO

Strengthening direct interspecies electron transfer (DIET), via adding conductive materials, is regarded as an effective way for improving methane productivity of anaerobic digestion (AD). Therein, the supplementation of combined materials (composition of biochar and iron-based materials) has attracted increasing attention in recent years, because of their advantages of promoting organics reduction and accelerating biomass activity. However, as far as we known, there is no study comprehensively summarizing the application of this kind combined materials. Here, the combined methods of biochar and iron-based materials in AD system were introduced, and then the overall performance, potential mechanisms, and microbial contribution were summarized. Furthermore, a comparation of the combinated materials and single material (biochar, zero valent iron, or magnetite) in methane production was also evaluated to highlight the functions of combined materials. Based on these, the challenges and perspectives were proposed to point the development direction of combined materials utilization in AD field, which was hoped to provide a deep insight in engineering application.


Assuntos
Biocombustíveis , Ferro , Anaerobiose , Reatores Biológicos , Metano , Esgotos
19.
Environ Res ; 235: 116594, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467940

RESUMO

As a biological promising wastewater treatment technology, aerobic granular sludge (AGS) technology had been widely studied in sequencing batch reactors (SBRs) for the decades. Presently, the whole processes of its granulation, long-term operation, storage, and reactivation have not been thoroughly evaluated, and also the relationships among microbial diversity, granular size, and characteristics were still not that clear. Hence, they were systematically evaluated in an AGS-SBR in this work. The results demonstrated that Proteobacteria and Bacteroidetes were the dominant phyla, Flavobacterium, Acinetobacter, Azoarcus, and Chryseobacterium were the core genera with discrepant abundances in diverse stages or granular size. Microbial immigration was significant in various stages due to microbial diversity had a line relationship with COD/MLVSS ratio (R2 = 0.367). However, microbial diversity had no line relationship with granular size (R2 = 0.001), indicating the microbial diversity in different-sized AGS was similar, although granular size had a line relationship with settleability (R2 = 0.978). Overall, compared to sludge traits (e.g., sludge size, settleability), COD/MLVSS played a key role on microbial evolution. This study revealed the relationships between granule characteristics and microbial community, and contributed to the future AGS-related studies.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia , Aerobiose , Águas Residuárias , Nitrogênio
20.
Chemosphere ; 332: 138911, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37172622

RESUMO

The designation and fabrication of heterogeneous photocatalyst with superior redox capability is an important technique for emerging pollutants treatment. In this study, we designed the Z-scheme heterojunction of stable 3D-Bi2MoO6@MoO3/PU, which could not only accelerate the migration and separation in photogenerated carriers, but also stabilize the separation rate of photo-generation carriers. In the Bi2MoO6@MoO3/PU photocatalytic system, 88.89% of oxytetracycline (OTC, 10 mg L-1) and 78.25%-84.59% of multiple antibiotics (SDZ, NOR, AMX and CFX, 10 mg L-1) could be decomposed within 20 min under the optimized reaction condition, revealing the superior performance and potential application value. Specifically, the morphology, chemical structure and optical properties detection of Bi2MoO6@MoO3/PU greatly affected the direct Z-scheme electron transferring mode in the p-n type heterojunction. Besides, the ·OH, h+, ·O2- dominated the photoactivation process through ring-opening, dihydroxylation, deamination, decarbonization and demethylation in OTC decomposition. Expectantly, the stability and universality of Bi2MoO6@MoO3/PU composite photocatalyst would further broaden the practical application and demonstrated that the potential of photocatalytic technique in antibiotics pollutants for wastewater remediation.


Assuntos
Poluentes Ambientais , Oxitetraciclina , Antibacterianos , Fotólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA