Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.595
Filtrar
1.
BMC Biol ; 22(1): 146, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956599

RESUMO

BACKGROUND: Metabolic associated fatty liver disease (MAFLD), a prevalent liver disorder affecting one-third of the global population, encompasses a spectrum ranging from fatty liver to severe hepatic steatosis. Both genetic and lifestyle factors, particularly diet and nutrition, contribute to its etiology. Folate deficiency, a frequently encountered type of malnutrition, has been associated with the pathogenesis of MAFLD and shown to impact lipid deposition. However, the underlying mechanisms of this relationship remain incompletely understood. We investigated the impact of disturbed folate-mediated one-carbon metabolism (OCM) on hepatic lipid metabolism both in vitro using human hepatoma cells and in vivo using transgenic fluorescent zebrafish displaying extent-, stage-, and duration-controllable folate deficiency upon induction. RESULTS: Disturbed folate-mediated one-carbon metabolism, either by inducing folate deficiency or adding anti-folate drug, compromises autophagy and causes lipid accumulation in liver cells. Disturbed folate status down-regulates cathepsin L, a key enzyme involved in autophagy, through inhibiting mTOR signaling. Interfered mitochondrial biology, including mitochondria relocation and increased fusion-fission dynamics, also occurs in folate-deficient hepatocytes. Folate supplementation effectively mitigated the impaired autophagy and lipid accumulation caused by the inhibition of cathepsin L activity, even when the inhibition was not directly related to folate deficiency. CONCLUSIONS: Disruption of folate-mediated OCM diminishes cathepsin L expression and impedes autophagy via mTOR signaling, leading to lipid accumulation within hepatocytes. These findings underscore the crucial role of folate in modulating autophagic processes and regulating lipid metabolism in the liver.


Assuntos
Autofagia , Ácido Fólico , Hepatócitos , Homeostase , Metabolismo dos Lipídeos , Peixe-Zebra , Autofagia/fisiologia , Ácido Fólico/metabolismo , Humanos , Hepatócitos/metabolismo , Animais , Deficiência de Ácido Fólico/metabolismo
2.
Mol Omics ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982979

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a chronic hepatic disease. The incidence and prevalence of NAFLD have increased greatly in recent years, and there is still a lack of effective drugs. Autophagy plays an important role in promoting liver metabolism and maintaining liver homeostasis, and defects in autophagy levels are considered to be related to the development of NAFLD. However, the molecular mechanisms of autophagy in NAFLD still remain unknown. In this study, we identified 6 autophagy-associated hub genes using gene expression profiles obtained from the GSE48452 and GSE89632 datasets. Biomarkers were screened according to gene significance (GS) and module membership (MM) using weighted gene co-expression network analysis (WGCNA), and the immune infiltration landscape of the liver in NAFLD patients was explored using the CIBERSORT algorithm. Subsequently, we analyzed the relationship between liver non-parenchymal cells and autophagy-related hub genes using scRNA-seq data (GSE129516). Finally, we separated the NAFLD patients into two groups based on 6 hub genes by consensus clustering and screened 10 potential autophagy-related small molecules based on the cMAP database.

4.
Sensors (Basel) ; 24(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000992

RESUMO

Electric cell-substrate impedance sensing has been used to measure transepithelial and transendothelial impedances of cultured cell layers and extract cell parameters such as junctional resistance, cell-substrate separation, and membrane capacitance. Previously, a three-path cell-electrode model comprising two transcellular pathways and one paracellular pathway was developed for the impedance analysis of MDCK cells. By ignoring the resistances of the lateral intercellular spaces, we develop a simplified three-path model for the impedance analysis of epithelial cells and solve the model equations in a closed form. The calculated impedance values obtained from this simplified cell-electrode model at frequencies ranging from 31.25 Hz to 100 kHz agree well with the experimental data obtained from MDCK and OVCA429 cells. We also describe how the change in each model-fitting parameter influences the electrical impedance spectra of MDCK cell layers. By assuming that the junctional resistance is much smaller than the specific impedance through the lateral cell membrane, the simplified three-path model reduces to a two-path model, which can be used for the impedance analysis of endothelial cells and other disk-shaped cells with low junctional resistances. The measured impedance spectra of HUVEC and HaCaT cell monolayers nearly coincide with the impedance data calculated from the two-path model.


Assuntos
Impedância Elétrica , Células Endoteliais , Células Epiteliais , Microeletrodos , Cães , Animais , Humanos , Células Madin Darby de Rim Canino , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Células Endoteliais da Veia Umbilical Humana , Linhagem Celular , Modelos Biológicos
5.
J Pediatr Nurs ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025711

RESUMO

PROBLEM: The terminal phase of childhood cancer poses profound physical and mental challenges for children, simultaneously influencing parents and rendering them particularly susceptible to psychosocial issues. ELIGIBILITY CRITERIA: This review included studies exploring the experiences of either: (1) paediatric terminal oncology patients aged under 18 years, (2) parents with a child facing terminal cancer undergoing palliative care, or (3) parents with a child who had undergone palliative care and died. English language, qualitative journal studies or grey literature of any care settings, geographical locations and publication years were included. Studies exploring the experiences of (1) paediatric terminal oncology not receiving palliative care from qualified healthcare professionals, and (3) non-biological parents or non-parental family members, were excluded. SAMPLE: A total of 22 studies were included, published between January 2000 and December 2023. Seventy-two children (aged between 5 and 18 years old) and 236 parents (aged between 24 and 57 years old) participated across all studies. Palliative care settings mostly comprised oncology centres, hospitals and homes. RESULTS: Two themes were identified from the 22 included studies: (1) Navigating rough waters and enduring hardships, and (2) Preparing for end-of-life amidst the looming threat of death. CONCLUSIONS: This review underscored the importance of integrating palliative childhood cancer care in a holistic, age-specific, family-centred, person-centred and timely manner. IMPLICATIONS: Paediatric oncology nurses should attend to physical and psychosocial needs of children and parents, fostering familial and social ties while recognising cultural and spiritual needs. Future research could recruit participants of varying ages, genders, and cultures.

6.
J Asian Nat Prod Res ; : 1-13, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958642

RESUMO

Fuzheng Huayu recipe (FZHYR) is a Chinese patent medicine for the treatment of fibrosis. The effects of FZHYR on pulmonary fibrosis and macrophage polarization were investigated in vitro. FZHYR inhibited pulmonary inflammation and fibrosis and M2 polarization of macrophages in bleomycin-induced pulmonary fibrosis (BPF) of rat model. Differentially expressed genes were screened by high-throughput mRNA sequencing and GSEA showed that oxidative phosphorylation (OXPHOS) was correlated with BPF. FZHYR inhibited expressions of Ndufa2 and Ndufa6 in lung tissues of BPF rats. These findings suggest that OXPHOS pathway serves as a possible target for pulmonary fibrosis therapy by FZHYR.

7.
Biomater Sci ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028033

RESUMO

Increased disulfide crosslinking of secreted mucins causes elevated viscoelasticity of mucus and is a key determinant of mucus dysfunction in patients with cystic fibrosis (CF) and other muco-obstructive lung diseases. In this study, we describe the synthesis of a novel thiol-containing, sulfated dendritic polyglycerol (dPGS-SH), designed to chemically reduce these abnormal crosslinks, which we demonstrate with mucolytic activity assays in sputum from patients with CF. This mucolytic polymer, which is based on a reportedly anti-inflammatory polysulfate scaffold, additionally carries multiple thiol groups for mucolytic activity and can be produced on a gram-scale. After a physicochemical compound characterization, we compare the mucolytic activity of dPGS-SH to the clinically approved N-acetylcysteine (NAC) using western blot studies and investigate the effect of dPGS-SH on the viscoelastic properties of sputum samples from CF patients by oscillatory rheology. We show that dPGS-SH is more effective than NAC in reducing multimer intensity of the secreted mucins MUC5B and MUC5AC and demonstrate significant mucolytic activity by rheology. In addition, we provide data for dPGS-SH demonstrating a high compound stability, low cytotoxicity, and superior reaction kinetics over NAC at different pH levels. Our data support further development of the novel reducing polymer system dPGS-SH as a potential mucolytic to improve mucus function and clearance in patients with CF as well as other muco-obstructive lung diseases.

8.
Int J Surg ; 110(7): 4053-4061, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38980664

RESUMO

BACKGROUND: The authors aimed to use preoperative computed tomography images to develop a radiomic nomogram to select patients who would benefit from spleen-preserving splenic hilar (No.10) lymphadenectomy (SPSHL). METHODS: A pooled analysis of three distinct prospective studies was performed. The splenic hilar lymph node (SHLN) ratio (sLNR) was established as the quotient of the number of metastatic SHLN to the total number of SHLN. Radiomic features reflecting the phenotypes of the primary tumor (RS1) and SHLN region (RS2) were extracted and used as predictive factors for sLNR. RESULTS: This study included 733 patients: 301 in the D2 group and 432 in the D2+No.10 group. The optimal sLNR cutoff value was set at 0.4, and the D2+No.10 group was divided into three groups: sLNR=0, sLNR ≤0.4, and sLNR >0.4. Patients in the D2+No. 10 group were randomly divided into the training ( n =302) and validation ( n =130) cohorts. The AUCs value of the nomogram, including RS1 and RS2, were 0.952 in the training cohort and 0.888 in the validation cohort. The entire cohort was divided into three groups based on the nomogram scores: low, moderate, and high SHLN metastasis burden groups (LMB, MMB, and HMB, respectively). A similar 5-year OS rate was found between the D2 and D2+No. 10 groups in the LMB and HMB groups. In the MMB group, the 5-year OS of the D2+No. 10 group (73.4%) was significantly higher than that of the D2 group (37.6%) ( P <0.001). CONCLUSIONS: The nomogram showed good predictive ability for distinguishing patients with various SHLN metastasis burdens. It can accurately identify patients who would benefit from SPSHL.


Assuntos
Excisão de Linfonodo , Nomogramas , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , Idoso , Baço/diagnóstico por imagem , Baço/cirurgia , Baço/patologia , Adulto , Metástase Linfática/diagnóstico por imagem , Linfonodos/patologia , Linfonodos/diagnóstico por imagem , Linfonodos/cirurgia , Radiômica
9.
iScience ; 27(7): 110265, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39027368

RESUMO

Patients with tuberous sclerosis complex (TSC) develop multi-organ disease manifestations, with kidney angiomyolipomas (AML) and cysts being one of the most common and deadly. Early and regular AML/cyst detection and monitoring are vital to lower TSC patient morbidity and mortality. However, the current standard of care involves imaging-based methods that are not designed for rapid screening, posing challenges for early detection. To identify potential diagnostic screening biomarkers of AML/cysts, we performed global untargeted metabolomics in blood samples from 283 kidney AML/cyst-positive or -negative TSC patients using mass spectrometry. We identified 7 highly sensitive chemical features, including octanoic acid, that predict kidney AML/cysts in TSC patients. Patients with elevated octanoic acid have lower levels of very long-chain fatty acids (VLCFAs), suggesting that dysregulated peroxisome activity leads to overproduction of octanoic acid via VLCFA oxidation. These data highlight AML/cysts blood biomarkers for TSC patients and offers valuable metabolic insights into the disease.

10.
Cells ; 13(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891029

RESUMO

Glioblastoma Multiforme (GBM) is an aggressive brain tumor with a high mortality rate. Direct reprogramming of glial cells to different cell lineages, such as induced neural stem cells (iNSCs) and induced neurons (iNeurons), provides genetic tools to manipulate a cell's fate as a potential therapy for neurological diseases. NeuroD1 (ND1) is a master transcriptional factor for neurogenesis and it promotes neuronal differentiation. In the present study, we tested the hypothesis that the expression of ND1 in GBM cells can force them to differentiate toward post-mitotic neurons and halt GBM tumor progression. In cultured human GBM cell lines, including LN229, U87, and U373 as temozolomide (TMZ)-sensitive and T98G as TMZ-resistant cells, the neuronal lineage conversion was induced by an adeno-associated virus (AAV) package carrying ND1. Twenty-one days after AAV-ND1 transduction, ND1-expressing cells displayed neuronal markers MAP2, TUJ1, and NeuN. The ND1-induced transdifferentiation was regulated by Wnt signaling and markedly enhanced under a hypoxic condition (2% O2 vs. 21% O2). ND1-expressing GBM cultures had fewer BrdU-positive proliferating cells compared to vector control cultures. Increased cell death was visualized by TUNEL staining, and reduced migrative activity was demonstrated in the wound-healing test after ND1 reprogramming in both TMZ-sensitive and -resistant GBM cells. In a striking contrast to cancer cells, converted cells expressed the anti-tumor gene p53. In an orthotopical GBM mouse model, AAV-ND1-reprogrammed U373 cells were transplanted into the fornix of the cyclosporine-immunocompromised C57BL/6 mouse brain. Compared to control GBM cell-formed tumors, cells from ND1-reprogrammed cultures formed smaller tumors and expressed neuronal markers such as TUJ1 in the brain. Thus, reprogramming using a single-factor ND1 overcame drug resistance, converting malignant cells of heterogeneous GBM cells to normal neuron-like cells in vitro and in vivo. These novel observations warrant further research using patient-derived GBM cells and patient-derived xenograft (PDX) models as a potentially effective treatment for a deadly brain cancer and likely other astrocytoma tumors.


Assuntos
Reprogramação Celular , Glioblastoma , Neurônios , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos , Reprogramação Celular/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Temozolomida/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
12.
Sci Rep ; 14(1): 14332, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906973

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder resulting from abnormal expansion of an uninterrupted polyglutamine (polyQ) repeat in its disease protein, ataxin-7 (ATXN7). ATXN7 is part of Spt-Ada-Gcn5 acetyltransferase (SAGA), an evolutionarily conserved transcriptional coactivation complex with critical roles in chromatin remodeling, cell signaling, neurodifferentiation, mitochondrial health and autophagy. SCA7 is dominantly inherited and characterized by genetic anticipation and high repeat-length instability. Patients with SCA7 experience progressive ataxia, atrophy, spasticity, and blindness. There is currently no cure for SCA7, and therapies are aimed at alleviating symptoms to increase quality of life. Here, we report novel Drosophila lines of SCA7 with polyQ repeats in wild-type and human disease patient range. We find that ATXN7 expression has age- and polyQ repeat length-dependent reduction in fruit fly survival and retinal instability, concomitant with increased ATXN7 protein aggregation. These new lines will provide important insight on disease progression that can be used in the future to identify therapeutic targets for SCA7 patients.


Assuntos
Ataxina-7 , Modelos Animais de Doenças , Peptídeos , Ataxias Espinocerebelares , Animais , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/metabolismo , Ataxina-7/genética , Ataxina-7/metabolismo , Humanos , Peptídeos/metabolismo , Peptídeos/genética , Drosophila/genética , Animais Geneticamente Modificados , Progressão da Doença , Drosophila melanogaster/genética , Retina/metabolismo , Retina/patologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
13.
Cell Commun Signal ; 22(1): 301, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822356

RESUMO

BACKGROUND: Intrauterine adhesion (IUA) is one of the most severe causes of infertility in women of childbearing age with injured endometrium secondary to uterine performance. Stem cell therapy is effective in treating damaged endometrium. The current reports mainly focus on the therapeutic effects of stem cells through paracrine or transdifferentiation, respectively. This study investigates whether paracrine or transdifferentiation occurs preferentially in treating IUA. METHODS: Human amniotic mesenchymal stem cells (hAMSCs) and transformed human endometrial stromal cells (THESCs) induced by transforming growth factor beta (TGF-ß1) were co-cultured in vitro. The mRNA and protein expression levels of Fibronectin (FN), Collagen I, Cytokeratin19 (CK19), E-cadherin (E-cad) and Vimentin were detected by Quantitative real-time polymerase chain reaction (qPCR), Western blotting (WB) and Immunohistochemical staining (IHC). The Sprague-Dawley (SD) rats were used to establish the IUA model. hAMSCs, hAMSCs-conditional medium (hAMSCs-CM), and GFP-labeled hAMSCs were injected into intrauterine, respectively. The fibrotic area of the endometrium was evaluated by Masson staining. The number of endometrium glands was detected by hematoxylin and eosin (H&E). GFP-labeled hAMSCs were traced by immunofluorescence (IF). hAMSCs, combined with PPCNg (hAMSCs/PPCNg), were injected into the vagina, which was compared with intrauterine injection. RESULTS: qPCR and WB revealed that FN and Collagen I levels in IUA-THESCs decreased significantly after co-culturing with hAMSCs. Moreover, CK19, E-cad, and Vimentin expressions in hAMSCs showed no significant difference after co-culture for 2 days. 6 days after co-culture, CK19, E-cad and Vimentin expressions in hAMSCs were significantly changed. Histological assays showed increased endometrial glands and a remarkable decrease in the fibrotic area in the hAMSCs and hAMSCs-CM groups. However, these changes were not statistically different between the two groups. In vivo, fluorescence imaging revealed that GFP-hAMSCs were localized in the endometrial stroma and gradually underwent apoptosis. The effect of hAMSCs by vaginal injection was comparable to that by intrauterine injection assessed by H&E staining, MASSON staining and IHC. CONCLUSIONS: Our data demonstrated that hAMSCs promoted endometrial repair via paracrine, preferentially than transdifferentiation.


IUA is the crucial cause of infertility in women of childbearing age, and no satisfactory treatment measures have been found in the clinic. hAMSCs can effectively treat intrauterine adhesions through paracrine and transdifferentiation mechanisms. This study confirmed in vitro and in vivo that amniotic mesenchymal stem cells preferentially inhibited endometrial fibrosis and promoted epithelial repair through paracrine, thus effectively treating intrauterine adhesions. The level of fibrosis marker proteins in IUA-THESCs decreased significantly after co-culturing with hAMSCs for 2 days in vitro. However, the level of epithelial marker proteins in hAMSCs increased significantly, requiring at least 6 days of co-culture. hAMSCs-CM had the same efficacy as hAMSCs in inhibiting fibrosis and promoting endometrial repair in IUA rats, supporting the idea that hAMSCs promoted endometrial remodeling through paracrine in vivo. In addition, GFP-labeled hAMSCs continuously colonized the endometrial stroma instead of the epithelium and gradually underwent apoptosis. These findings prove that hAMSCs ameliorate endometrial fibrosis of IUA via paracrine, preferentially than transdifferentiation, providing the latest insights into the precision treatment of IUA with hAMSCs and a theoretical basis for promoting the "cell-free therapy" of MSCs.


Assuntos
Âmnio , Transdiferenciação Celular , Endométrio , Células-Tronco Mesenquimais , Comunicação Parácrina , Ratos Sprague-Dawley , Feminino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Endométrio/citologia , Endométrio/metabolismo , Animais , Âmnio/citologia , Âmnio/metabolismo , Ratos , Transplante de Células-Tronco Mesenquimais/métodos , Técnicas de Cocultura , Aderências Teciduais/patologia , Aderências Teciduais/metabolismo
15.
Biomacromolecules ; 25(7): 4014-4029, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38832927

RESUMO

This study presents a comprehensive characterization of the viscoelastic and structural properties of bovine submaxillary mucin (BSM), which is widely used as a commercial source to conduct mucus-related research. We conducted concentration studies of BSM and examined the effects of various additives, NaCl, CaCl2, MgCl2, lysozyme, and DNA, on its rheological behavior. A notable connection between BSM concentration and viscoelastic properties was observed, particularly under varying ionic conditions. The rheological spectra could be well described by a fractional Kelvin-Voigt model with a minimum of model parameters. A detailed proteomics analysis provided insight into the protein, especially mucin composition within BSM, showing MUC19 as the main component. Cryo-scanning electron microscopy enabled the visualization of the porous BSM network structure. These investigations give us a more profound comprehension of the BSM properties, especially those pertaining to viscoelasticity, and how they are influenced by concentration and environmental conditions, aspects relevant to the field of mucus research.


Assuntos
Hidrogéis , Mucinas , Animais , Bovinos , Mucinas/química , Hidrogéis/química , Viscosidade , Elasticidade , Reologia , Glândula Submandibular/química , Glândula Submandibular/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-38848117

RESUMO

Two Gram-stain-negative, straight rods, non-motile, asporogenous, catalase-negative and obligately anaerobic butyrate-producing strains, HLW78T and CYL33, were isolated from faecal samples of two healthy Taiwanese adults. Phylogenetic analyses of 16S rRNA and DNA mismatch repair protein MutL (mutL) gene sequences revealed that these two novel strains belonged to the genus Faecalibacterium. On the basis of 16S rRNA and mutL gene sequence similarities, the type strains Faecalibacterium butyricigenerans AF52-21T(98.3-98.1 % and 79.0-79.5 % similarity), Faecalibacterium duncaniae A2-165T(97.8-97.9 % and 70.9-80.1 %), Faecalibacterium hattorii APC922/41-1T(97.1-97.3 % and 80.3-80.5 %), Faecalibacterium longum CM04-06T(97.8-98.0% and 78.3 %) and Faecalibacterium prausnitzii ATCC 27768T(97.3-97.4 % and 82.7-82.9 %) were the closest neighbours to the novel strains HLW78T and CYL33. Strains HLW78T and CYL33 had 99.4 % both the 16S rRNA and mutL gene sequence similarities, 97.9 % average nucleotide identity (ANI), 96.3 % average amino acid identity (AAI), and 80.5 % digital DNA-DNA hybridization (dDDH) values, indicating that these two strains are members of the same species. Phylogenomic tree analysis indicated that strains HLW78T and CYL33 formed an independent robust cluster together with F. prausnitzii ATCC 27768T. The ANI, AAI and dDDH values between strain HLW78T and its closest neighbours were below the species delineation thresholds of 77.6-85.1 %, 71.4-85.2 % and 28.3-30.9 %, respectively. The two novel strains could be differentiated from the type strains of their closest Faecalibacterium species based on their cellular fatty acid compositions, which contained C18 : 1 ω7c and lacked C15 : 0 and C17 : 1 ω6c, respectively. Phenotypic, chemotaxonomic and genotypic test results demonstrated that the two novel strains HLW78T and CYL33 represented a single, novel species within the genus Faecalibacterium, for which the name Faecalibacterium taiwanense sp. nov. is proposed. The type strain is HLW78T (=BCRC 81397T=NBRC 116372T).


Assuntos
Técnicas de Tipagem Bacteriana , DNA Bacteriano , Faecalibacterium , Ácidos Graxos , Fezes , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Fezes/microbiologia , Humanos , RNA Ribossômico 16S/genética , Taiwan , DNA Bacteriano/genética , Ácidos Graxos/análise , Adulto , Faecalibacterium/genética , Faecalibacterium/isolamento & purificação , Faecalibacterium/classificação , Composição de Bases , Proteínas MutL/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-38839623

RESUMO

PURPOSE: Brain aging is a complex and heterogeneous process characterized by both structural and functional decline. This study aimed to establish a novel deep learning (DL) method for predicting brain age by utilizing structural and metabolic imaging data. METHODS: The dataset comprised participants from both the Universal Medical Imaging Diagnostic Center (UMIDC) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). The former recruited 395 normal control (NC) subjects, while the latter included 438 NC subjects, 51 mild cognitive impairment (MCI) subjects, and 56 Alzheimer's disease (AD) subjects. We developed a novel dual-pathway, 3D simple fully convolutional network (Dual-SFCNeXt) to estimate brain age using [18F]fluorodeoxyglucose positron emission tomography ([18F]FDG PET) and structural magnetic resonance imaging (sMRI) images of NC subjects as input. Several prevailing DL models were trained and tested using either MRI or PET data for comparison. Model accuracies were evaluated using mean absolute error (MAE) and Pearson's correlation coefficient (r). Brain age gap (BAG), deviations of brain age from chronologic age, was correlated with cognitive assessments in MCI and AD subjects. RESULTS: Both PET- and MRI-based models achieved high prediction accuracy. The leading model was the SFCNeXt (the single-pathway version) for PET (MAE = 2.92, r = 0.96) and MRI (MAE = 3.23, r = 0.95) on all samples. By integrating both PET and MRI images, the Dual-SFCNeXt demonstrated significantly improved accuracy (MAE = 2.37, r = 0.97) compared to all single-modality models. Significantly higher BAG was observed in both the AD (P < 0.0001) and MCI (P < 0.0001) groups compared to the NC group. BAG correlated significantly with Mini-Mental State Examination (MMSE) scores (r=-0.390 for AD, r=-0.436 for MCI) and the Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) scores (r = 0.333 for AD, r = 0.372 for MCI). CONCLUSION: The integration of [18F]FDG PET with structural MRI enhances the accuracy of brain age prediction, potentially introducing a new avenue for related multimodal brain age prediction studies.

19.
Environ Res ; 256: 119237, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810829

RESUMO

Ionizing radiation (IR) poses a significant threat to both the natural environment and biological health. Exposure to specific doses of ionizing radiation early in an organism's development can lead to developmental toxicity, particularly neurotoxicity. Through experimentation with Xenopus laevis (X. laevis), we examined the effects of radiation on early developmental stage. Our findings revealed that radiation led to developmental abnormalities and mortality in X. laevis embryos in a dose-dependent manner, disrupting redox homeostasis and inducing cell apoptosis. Additionally, radiation caused neurotoxic effects, resulting in abnormal behavior and neuron damage in the embryos. Further investigation into the underlying mechanisms of radiation-induced neurotoxicity indicated the potential involvement of the neuroactive ligand-receptor interaction pathway, which was supported by RNA-Seq analysis. Validation of gene expression associated with this pathway and analysis of neurotransmitter levels confirmed our hypothesis. In addition, we further validated the important role of this signaling pathway in radiation-induced neurotoxicity through edaravone rescue experiments. This research establishes a valuable model for radiation damage studying and provides some insight into radiation-induced neurotoxicity mechanisms.


Assuntos
Embrião não Mamífero , Radiação Ionizante , Xenopus laevis , Animais , Embrião não Mamífero/efeitos da radiação , Síndromes Neurotóxicas/etiologia , Transdução de Sinais/efeitos da radiação , Apoptose/efeitos da radiação , Ligantes
20.
J Alzheimers Dis ; 99(4): 1349-1359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820018

RESUMO

Background: Alzheimer's disease (AD) is a neurodegenerative disease characterized by brain network dysfunction. Few studies have investigated whether the functional connections between executive control networks (ECN) and other brain regions can predict the therapeutic effect of repetitive transcranial magnetic stimulation (rTMS). Objective: The purpose of this study is to examine the relationship between the functional connectivity (FC) within ECN networks and the efficacy of rTMS. Methods: We recruited AD patients for rTMS treatment. We established an ECN using baseline period fMRI data and conducted an analysis of the ECN's FC throughout the brain. Concurrently, the support vector regression (SVR) method was employed to project post-rTMS cognitive scores, utilizing the connectional attributes of the ECN as predictive markers. Results: The average age of the patients was 66.86±8.44 years, with 8 males and 13 females. Significant improvement on most cognitive measures. We use ECN connectivity and brain region functions in baseline patients as features for SVR model training and fitting. The SVR model could demonstrate significant predictability for changes in Montreal Cognitive Assessment scores among AD patients after rTMS treatment. The brain regions that contributed most to the prediction of the model (the top 10% of weights) were located in the medial temporal lobe, middle temporal gyrus, frontal lobe, parietal lobe and occipital lobe. Conclusions: The stronger the antagonism between ECN and parieto-occipital lobe function, the better the prediction of cognitive improvement; the stronger the synergy between ECN and fronto-temporal lobe function, the better the prediction of cognitive improvement.


Assuntos
Doença de Alzheimer , Função Executiva , Imageamento por Ressonância Magnética , Estimulação Magnética Transcraniana , Humanos , Doença de Alzheimer/terapia , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Masculino , Feminino , Idoso , Estimulação Magnética Transcraniana/métodos , Função Executiva/fisiologia , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Resultado do Tratamento , Testes Neuropsicológicos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA