Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(14): 15818-15832, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617642

RESUMO

How to realize efficient treatment of coal slime generated by a coal washing operation is an urgent problem to be solved in this industry. The presence of clay minerals, especially highly hydrophilic montmorillonite (MMT), is the key to the poor treatment effect of coal slime. Polyacrylamide (PAM) is very popular as a polymer agent to improve the treatment of coal slime. However, when it is used to treat coal slime with a high content of MMT, the selection of PAM type and the mechanism of action are still lacking. In this study, the effects of different types of PAM on the treatment of coal slime water containing MMT are considered by sedimentation and press filtration tests. The interaction mechanism of PAM on the MMT surface is studied by using ζ-potential, Brunauer-Emmett-Teller (BET) analysis, low-field nuclear magnetic resonance, density functional theory (DFT), and molecular dynamics (MD) simulations. The results show that the three PAM can improve the sedimentation and filtration effect of coal slime water, and the performance is CPAM > NPAM > APAM. The ζ-potential of the MMT (001) surface increases under the action of three PAM, and the effect of CPAM is the most significant. The adsorption of PAM on the MMT (001) surface has the ability to neutralize the surface charge of MMT. The flocculation of MMT particles under PAM results in an increase of particle size and a decrease of specific surface area. Meanwhile, the pore volume of MMT decreases, and the average pore size increases. In addition, PAM mainly removes vicinal water on the MMT surface. The active sites of the MMT surface and PAM are calculated by DFT. The adsorption of three PAM structural units on the MMT Na-001 surface and non-001 surface is nonbonding interaction, and the adsorption energy of CPAM is the largest. And the left shift of εp of the O atom on the MMT surface is conducive to the stable adsorption of CPAM. The MD results show that the concentration of water molecules on the surface of MMT Na-001 decreases after PAM is adsorbed on the MMT Na-001 surface, indicating that PAM can keep water molecules away from the surface of MMT, which means that the hydrophobicity of the MMT surface is enhanced. This study has guiding significance for the selection of PAM and the development of new flocculants in the treatment of coal slime with a high content of MMT.

2.
Materials (Basel) ; 15(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36013751

RESUMO

With the widespread application of circulating fluidized bed (CFB) combustion technology, the popularity of CFB ash (CFBA) has increased dramatically and its production and large-scale utilization have become increasingly important. In the context of carbon neutrality peaking, using CFBA as a cement admixture as an effective method of resource utilization not only reduces the pressures caused by carbon emissions in the cement industry but also solves the environmental problems caused by CFBA depositing. However, the formation conditions of CFBA are worse than those of traditional pulverized coal boilers. CFB ash is the combustion product of coal at 850 °C-950 °C, and the characteristics of CFBA usually include a loose and porous structure with many amorphous substances. Furthermore, it has the disadvantages of large particle size, high water-demand ratio, and low activity index when it is directly used as a cement admixture. In this study, CFBA (including fly ash (CFBFA) and bottom ash (CFBBA)) produced by a CFB boiler without furnace desulfurization with limestone was used as a cement admixture material, and the effect of grinding on the fineness, water-demand ratio, and activity index of CFBA were studied. The experimental results showed that the grinding effect could significantly reduce the fineness and water-demand ratio of CFBA as a cement mixture and improve the activity index. With the increase in the grinding time, the water-demand ratio of CFBA first decreased and then increased. CFBBA ground for 10 min and CFBFA ground for 4 min can reduce the water-demand ratio of CFBA by up to 105% and increase the compressive strength of 28-day-old CFBA cement by 7.05%. The grinding process can ensure that CFBA meets the Chinese standards for a cement admixture and realize the resource utilization of CFBA.

3.
ACS Omega ; 6(14): 9868-9875, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33869967

RESUMO

The utilization of industrial waste as renewable resources is an essential issue of sustainable development. Kish graphite is a precipitate of excess carbon generated during the cooling of molten iron and one of the byproducts associated with steel slags. The scale-up recycling of kish graphite from steelmaking slags is a promising way to develop natural graphite alternatives. However, only one means cannot work efficiently because of the unusual occurrence of associated impurities; combining multiple separation methods is the solution. In this paper, we proposed an integrated beneficiation process, pneumatic separation-flotation-sonication-magnetic separation, to recycle kish graphite flakes with a high graphitization degree and investigated the sorption performance of various oils on kish-based expanded graphite. The new process avoided shortages such as the sediments of iron particles in the flotation cell and the loss of clean graphite in the magnetic separation. Consequently, the carbon content of kish graphite reached ∼95% after separation and >99% after acid leaching. The macroscopic structural defects of kish particles created more active sites, made the intercalation of KG-GICs faster, and yielded better-staged compounds. The kish graphite-based expanded graphite presented an octopus-like shape and exhibited an expansion volume of ∼150 mL/g. Furthermore, the developed macropore structure of the obtained kish graphite-based expanded graphite led to a superior sorption performance for oils. This work supplies one feasible and promising way to recycle kish graphite from steelmaking slags and use it.

4.
J Phys Chem B ; 114(39): 12448-54, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20828211

RESUMO

A novel class of amphiphilic cationic polyelectrolytes, poly(A-co-G)s, comprising of gemini type surfactant segment 1,3-bis(N,N-dimethyl-N-dodecylammonium)-2-propylacrylate dibromide (G) and acryloyloxyethyl trimethyl ammonium chloride (A), were synthesized. Their aggregation properties were investigated by employing fluorescence spectroscopy, dynamic light scattering, transmission electron microscopy, and ζ-potential measurements. For comparison, a series of polyelectrolytes containing a traditional single alkyl chain surfactant unit (acryloyloxyethyl-N,N-dimethyl-N-dodecylammonium bromide (D)), poly(A-co-D)s, were also synthesized and investigated. It was found that the critical aggregation concentration (cac) of poly(A-co-G)s is much lower than that of poly(A-co-D)s. The huge interpolymer aggregates (with a hydrodynamic radius of >450 nm) occur in poly(A-co-G)s aqueous solution, and the size of aggregates increases with the increase of the molar content of the gemini-type surfmer segment and the concentration of the copolymer. The size of aggregates in poly(A-co-D)s aqueous solution is much smaller than poly(A-co-G)s, which also increases with the increase of the molar content of the single alkyl chain surfmer segment and the concentration of the copolymer. The results of aggregation number and charge density of aggregate in poly(A-co-G)s and poly(A-co-D)s indicate that the copolymers have a strong tendency toward interpolymer aggregation and the aggregates in poly(A-co-G)s are much more compact than those of poly(A-co-D)s. These results are interpreted in terms of the synergistic effects of double hydrophobic chains on the gemini surfactant unit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA