Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Hazard Mater ; 475: 134903, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878441

RESUMO

Copper is one of the unavoidable heavy metals in wine production. In this study, the effects on fermentation performance and physiological metabolism of Saccharomyces cerevisiae under copper stress were investigated. EC1118 was the most copper-resistant among the six strains. The ethanol accumulation of EC1118 was 26.16-20 mg/L Cu2+, which was 1.90-3.15 times higher than that of other strains. The fermentation rate was significantly reduced by copper, and the inhibition was relieved after 4-10 days of adjustment. Metabolomic-transcriptomic analysis revealed that amino acid and nucleotide had the highest number of downregulated and upregulated differentially expressed metabolites, respectively. The metabolism of fructose and mannose was quickly affected, which then triggered the metabolism of galactose in copper stress. Pathways such as oxidative and organic acid metabolic processes were significantly affected in the early time, resulting in a significant decrease in the amount of carboxylic acids. The pathways related to protein synthesis and metabolism under copper stress, such as translation and peptide biosynthetic process, was also significantly affected. In conclusion, this study analyzed the metabolite-gene interaction network and molecular response during the alcohol fermentation of S. cerevisiae under copper stress, providing theoretical basis for addressing the influence of copper stress in wine production.

2.
Mol Cell ; 84(12): 2304-2319.e8, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38838666

RESUMO

Circular RNAs (circRNAs) are upregulated during neurogenesis. Where and how circRNAs are localized and what roles they play during this process have remained elusive. Comparing the nuclear and cytoplasmic circRNAs between H9 cells and H9-derived forebrain (FB) neurons, we identify that a subset of adenosine (A)-rich circRNAs are restricted in H9 nuclei but exported to cytosols upon differentiation. Such a subcellular relocation of circRNAs is modulated by the poly(A)-binding protein PABPC1. In the H9 nucleus, newly produced (A)-rich circRNAs are bound by PABPC1 and trapped by the nuclear basket protein TPR to prevent their export. Modulating (A)-rich motifs in circRNAs alters their subcellular localization, and introducing (A)-rich circRNAs in H9 cytosols results in mRNA translation suppression. Moreover, decreased nuclear PABPC1 upon neuronal differentiation enables the export of (A)-rich circRNAs, including circRTN4(2,3), which is required for neurite outgrowth. These findings uncover subcellular localization features of circRNAs, linking their processing and function during neurogenesis.


Assuntos
Transporte Ativo do Núcleo Celular , Adenosina , Núcleo Celular , Neurogênese , Neurônios , Proteína I de Ligação a Poli(A) , RNA Circular , RNA , RNA Circular/metabolismo , RNA Circular/genética , Neurônios/metabolismo , Adenosina/metabolismo , Núcleo Celular/metabolismo , Humanos , Proteína I de Ligação a Poli(A)/metabolismo , Proteína I de Ligação a Poli(A)/genética , Animais , RNA/metabolismo , RNA/genética , Linhagem Celular , Diferenciação Celular , Citoplasma/metabolismo , Prosencéfalo/metabolismo
3.
Micromachines (Basel) ; 15(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38793231

RESUMO

During circuit conduction immunity simulation assessments, the existing black-box modeling methods for chips generally involve the use of time-domain-based modeling methods or ICIM-CI binary decision models, which can provide approximate immunity assessments but require a high number of tests to be performed when carrying out broadband immunity assessments, as well as having a long modeling time and demonstrating poor reproducibility and insufficient accuracy in capturing the complex electromagnetic response in the frequency domain. To address these issues, in this paper, we propose a novel frequency-domain broadband model (Sensi-Freq-Model) of IC conduction susceptibility that accurately quantifies the conduction immunity of components in the frequency domain and builds a model of the IC based on the quantized data. The method provides high fitting accuracy in the frequency domain, which significantly improves the accuracy of circuit broadband design. The generated model retains as much information within the frequency-domain broadband as possible and reduces the need to rebuild the model under changing electromagnetic environments, thereby enhancing the portability and repeatability of the model. The ability to reduce the modeling time of the chip greatly improves modeling efficiency and circuit design. The results of this study show that the "Sensi-Freq-Model" reduces the broadband modeling time by about 90% compared to the traditional ICIM-CI method and improves the normalized mean square error (NMSE) by 18.5 dB.

4.
Nat Biotechnol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653797

RESUMO

Efforts to advance RNA aptamers as a new therapeutic modality have been limited by their susceptibility to degradation and immunogenicity. In a previous study, we demonstrated synthesized short double-stranded region-containing circular RNAs (ds-cRNAs) with minimal immunogenicity targeted to dsRNA-activated protein kinase R (PKR). Here we test the therapeutic potential of ds-cRNAs in a mouse model of imiquimod-induced psoriasis. We find that genetic supplementation of ds-cRNAs leads to inhibition of PKR, resulting in alleviation of downstream interferon-α and dsRNA signals and attenuation of psoriasis phenotypes. Delivery of ds-cRNAs by lipid nanoparticles to the spleen attenuates PKR activity in examined splenocytes, resulting in reduced epidermal thickness. These findings suggest that ds-cRNAs represent a promising approach to mitigate excessive PKR activation for therapeutic purposes.

5.
Sci Total Environ ; 924: 171595, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38492585

RESUMO

Understanding the dynamics of tree recovery after drought is critical for predicting the state of tree growth in the context of future climate change. While there has been a great deal of researches showing that drought events can cause numerous significant negative effects on tree growth, the positive effects of post-drought wetting events on tree growth remain unclear. Therefore, we analyzed the effect of wet and dry events on the radial growth of trees in Central Asia using data on the width of tree rings. The results showed that 1) Drought is the main limiting factor for radial growth of trees in Central Asia, and that as the intensity and sensitivity of drought increases, tree resistance decreases and recovery rises, and more frequent droughts reduce tree resistance. 2) Tree radial growth varied significantly with wet and dry conditions, with wet events before and after drought events significantly enhancing tree radial growth. 3) When drought is followed by a wetting event, the relationship between tree resistance and recovery is closer to the "line of full resilience", with a significant increase in recovery, and compensatory growth is more likely to occur. Thus, wetting events have a significant positive effect on tree radial growth and are a key factor in rapid tree growth recovery after drought.


Assuntos
Mudança Climática , Secas , Florestas
6.
Micromachines (Basel) ; 15(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38258240

RESUMO

Operational amplifiers (op-amps) are widely used in circuit systems. The increasing complexity of the power supply network has led to the susceptibility of the power supply port to electromagnetic interference (EMI) in circuit systems. Therefore, it is necessary to investigate the electromagnetic susceptibility (EMS) of op-amps at the power supply port. In this paper, we assessed the effect of EMI on the operational performance of op-amps through the power supply port by a bulk current injection (BCI) method. Firstly, we conducted the continuous sine wave into the power supply port by a current injection probe and measured the change in the offset voltage under EMI. Secondly, we proposed a new method of conducted susceptibility and obtained the susceptibility threshold regularities of the op-amps at the power supply port under the interference of different waveform signals. Our study provided conclusive evidence that EMI reduced the reliability of the op-amp by affecting the offset voltage of op-amps and demonstrated that the sensitivity type of op-amps was peak-sensitive at the power supply port. This study contributed to a deep understanding of the EMS mechanism and guided the design of electromagnetic compatibility (EMC) of op-amps.

7.
Food Chem X ; 20: 100976, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144722

RESUMO

Low acid is the main defect in the northwest wine region of China in recent years. The fermentation of unripe grape (UG) and wine grapes with low acid contents was carried out. Compared with control group (CK), the addition of UG addressed the core flaw that low acid grape bring to wine firstly, it significantly increased titratable acid, tartaric acid and malic acid while significantly decreasing alcohol and volatile acids in wine. Secondly, UG significantly improved wine color, the color parameters a*, b*, C* and L* were significantly increased to different degrees. At the same time, the addition of UG significantly improves other qualities of wine, including the phenolic substances and antioxidant capacity of wine. In addition, adding UGJ2% significantly improved the sensory quality, and pleasant volatile substances such as phenethyl alcohol, ethyl hexanoate, ethyl butyrate and isoamyl acetate were significantly increased, giving the wine more prominent floral and fruity aromas.

8.
J Chromatogr A ; 1711: 464447, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37847968

RESUMO

A rapid and highly sensitive method for the quantification of 34 restricted dyes (including acid, basic, disperse, direct, and azo dyes) in solid textile raw material wastes was developed by employing ultrasonic extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS). More specifically, the proposed method employed methanol as the extraction solvent, while the mobile phases consisted of acetonitrile and 10 mmol/L ammonium acetate + 0.05% ammonia. A good linearity was achieved over the concentration range of 0.01-200 ng/mL with correlation coefficients (R) between 0.991-0.999, limits of detection (LODs) of 0.25-40.0 µg/kg (S/N = 3) and limits of quantification (LOQs) of 0.84-133.4 µg/kg (S/N = 10). 34 dyes were recovered at three levels ranging from 84.5 to 106.9% with relative standard deviation (RSDs) ranging from 0.59% to 10.61%. Further, the method was applied for the accurate analysis of 32 counts of cotton yarn, waste cotton, and printed fabrics within 15 min. The dyestuffs accurately quantified by this rapid chromatographic procedure covered a wide range of carcinogenic and allergenic dyestuffs listed in the Oeko-Tex Standard 100 (version 02.2023) colourants. The ultrasound technique combined with the ultra-high performance liquid chromatography-tandem mass spectrometry method proposed in this work is thus suitable for the rapid screening, confirmation, and quantitative detection of industrial synthetic dyes within solid waste originating from textile raw materials.


Assuntos
Corantes , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Corantes/análise , Espectrometria de Massas em Tandem/métodos , Resíduos Sólidos/análise , Têxteis/análise , Extração em Fase Sólida
9.
Sci Total Environ ; 903: 166864, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37683873

RESUMO

Global climate change is exacerbating drought pressure on forests. However, the response patterns and physiological mechanisms of conifer species to drought, specifically in terms of radial growth, ecological resilience and soil water utilization, are not clearly understood. This study aims to quantify the effects of resilience on radial growth and identify the role of soil moisture utilization strategies in the resilience of species under drought intensities. We focus on two conifer species, Picea crassifolia (spruce) and Pinus tabuliformis (pine), located on the southern edge of the Tengger Desert in northwestern China. The dynamics of radial growth and ecological resilience were identified, and the seasonal growth rates of species based on soil water were simulated using the VS-oscilloscope model under varying drought stress. The results showed that spruce growth and recovery contributed by soil water were suppressed with frequent severe droughts, leading to a decline in growth (-0.5 cm2 year-1/10a, p < 0.05), despite its greater resistance to mild and moderate drought (-4.63 %). However, pine exhibited a stronger recovery (+40.25 %, p < 0.05) and higher variation in growth (-0.3 cm2 year-1/10a, p < 0.05) under soil moisture stress, despite its weaker resistance to drought (-23.53 %, p < 0.05). These findings provide insights into the growth, resilience, and water adaptation mechanisms of species under drought events, and theoretical support for the conservation and management of conifer diversity and forest ecosystem stability in climate-sensitive regions.

10.
Nat Commun ; 14(1): 5075, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604798

RESUMO

Tea is known for having a high catechin content, with the main component being (-)-epigallocatechin gallate (EGCG), which has significant bioactivities, including potential anti-cancer and anti-inflammatory activity. The poor intestinal stability and permeability of EGCG, however, undermine these health-improving benefits. O-methylated EGCG derivatives, found in a few tea cultivars in low levels, have attracted considerable interest due to their increased bioavailability. Here, we identify two O-methyltransferases from tea plant: CsFAOMT1 that has a specific O-methyltransferase activity on the 3''-position of EGCG to generate EGCG3''Me, and CsFAOMT2 that predominantly catalyzes the formation of EGCG4″Me. In different tea tissues and germplasms, the transcript levels of CsFAOMT1 and CsFAOMT2 are strongly correlated with the amounts of EGCG3''Me and EGCG4''Me, respectively. Furthermore, the crystal structures of CsFAOMT1 and CsFAOMT2 reveal the key residues necessary for 3''- and 4''-O-methylation. These findings may provide guidance for the future development of tea cultivars with high O-methylated catechin content.


Assuntos
Camellia sinensis , Catequina , Metiltransferases/genética , Disponibilidade Biológica , Camellia sinensis/genética , Chá
11.
BMC Plant Biol ; 23(1): 206, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081399

RESUMO

BACKGROUND: AP2/ERF transcription factors (AP2/ERFs) are important regulators of plant physiological and biochemical metabolism. Evidence suggests that AP2/ERFs may be involved in the regulation of bud break in woody perennials. Green tea is economically vital in China, and its production value is significantly affected by the time of spring bud break of tea plant. However, the relationship between AP2/ERFs in tea plant and spring bud break remains largely unknown. RESULTS: A total of 178 AP2/ERF genes (CsAP2/ERFs) were identified in the genome of tea plant. Based on the phylogenetic analysis, these genes could be classified into five subfamilies. The analysis of gene duplication events demonstrated that whole genome duplication (WGD) or segmental duplication was the primary way of CsAP2/ERFs amplification. According to the result of the Ka/Ks value calculation, purification selection dominated the evolution of CsAP2/ERFs. Furthermore, gene composition and structure analyses of CsAP2/ERFs indicated that different subfamilies contained a variety of gene structures and conserved motifs, potentially resulting in functional differences among five subfamilies. The promoters of CsAP2/ERFs also contained various signal-sensing elements, such as abscisic acid responsive elements, light responsive elements and low temperature responsive elements. The evidence presented here offers a theoretical foundation for the diverse functions of CsAP2/ERFs. Additionally, the expressions of CsAP2/ERFs during spring bud break of tea plant were analyzed by RNA-seq and grouped into clusters A-F according to their expression patterns. The gene expression changes in clusters A and B were more synchronized with the spring bud break of tea plant. Moreover, several potential correlation genes, such as D-type cyclin genes, were screened out through weighted correlation network analysis (WGCNA). Temperature and light treatment experiments individually identified nine candidate CsAP2/ERFs that may be related to the spring bud break of tea plant. CONCLUSIONS: This study provides new evidence for role of the CsAP2/ERFs in the spring bud break of tea plant, establishes a theoretical foundation for analyzing the molecular mechanism of the spring bud break of tea plant, and contributes to the improvement of tea cultivars.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Camellia sinensis/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas
12.
Compr Rev Food Sci Food Saf ; 22(3): 1794-1816, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36856534

RESUMO

Heavy metals are of particular concern in grape and wine processing, especially copper. The sources of copper are diverse, including vineyard soil, copper-containing pesticides on the fruit surface, copper wine-making equipment, and exogenous addition in winemaking. Copper has potential risks to human nerves, metabolism, and others. It can inhibit yeast growth, delay fermentation, and also mediate oxidation reactions, which has a huge impact on the nutritional quality and sensory quality of fresh wine and aged wine. It is therefore crucial to detect, quantify, and remove copper from grapes and wine. However, the copper situations in the wine industries of various countries are complicated and diverse, and the existing forms of copper are quite different, which makes the research challenging. This review summarizes and analyzes the existence and influence of copper in the wine industry by analyzing the sources of, the current situation regarding, and the detection and removal methods for copper in wine. With the study, a better understanding of copper's impact on wine production will be gained, facilitating further control of copper in wine and helping the wine industry grow.


Assuntos
Vitis , Vinho , Humanos , Vinho/análise , Cobre/metabolismo , Solo , Leveduras
13.
Microb Cell Fact ; 22(1): 42, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36864487

RESUMO

BACKGROUND: Adding acid protease to feed can enhance protein digestibility, boost feed utilization, and stimulate the growth of animals in breading industry. In order to obtain an acid protease with high hydrolysis efficiency to plant protein, in this study, an aspartic protease from Aspergillus niger was heterologous expressed in Pichia pastoris (P. pastoris). The enzymatic properties and application in soybean protein degradation were also studied. RESULTS: In our investigation, the high aspartic protease (Apa1) activity level of 1500 U/mL was achieved in 3 L bioreactor. After dialysis and anion exchange chromatography, the total enzyme activity and specific enzyme activity were 9412 U and 4852 U/mg, respectively. The molecular weight of the purified protease was 50 kDa, while the optimal pH and temperature were 3.0 and 50 °C, respectively. It was stable at pH 2.0-5.0 and 30-60 °C. Apa1 was used to hydrolyze soybean isolate protein (SPI) at 40 °C and pH 3.0, and a high hydrolysis degree (DH) of 61.65% was achieved. In addition, the molecular weight distribution of SPI hydrolysis products was studied, the result showed that the hydrolysis products were primarily oligopeptides with molecular weights of 189 Da or below. CONCLUSIONS: In this study, Apa1 was successfully expressed in P. pastoris and high expression level was obtained. In addition, the highest protein hydrolysis rate to SPI degradation so far was achieved. The acid protease in this study provides a new protease that is suitable for the feed industry, which will be very helpful to improve the feed utilization and promote the development of the breeding industry.


Assuntos
Aspergillus niger , Proteínas de Soja , Animais , Proteólise , Hidrólise , Aspergillus niger/genética , Diálise Renal , Peptídeo Hidrolases , Endopeptidases , Glycine max
14.
Hortic Res ; 10(2): uhac279, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793757

RESUMO

Caffeine is an important functional component in tea, which has the effect of excitement and nerve stimulation, but excessive intake can cause insomnia and dysphoria. Therefore, the production of tea with low-caffeine content can meet the consumption needs of certain people. Here, in addition to the previous alleles of the tea caffeine synthase (TCS1) gene, a new allele (TCS1h) from tea germplasms was identified. Results of in vitro activity analysis showed that TCS1h had both theobromine synthase (TS) and caffeine synthase (CS) activities. Site-directed mutagenesis experiments of TCS1a, TCS1c, and TCS1h demonstrated that apart from the 225th amino acid residue, the 269th amino acid also determined the CS activity. GUS histochemical analysis and dual-luciferase assay indicated the low promoter activity of TCS1e and TCS1f. In parallel, insertion and deletion mutations in large fragments of alleles and experiments of site-directed mutagenesis identified a key cis-acting element (G-box). Furthermore, it was found that the contents of purine alkaloids were related to the expression of corresponding functional genes and alleles, and the absence or presence and level of gene expression determined the content of purine alkaloids in tea plants to a certain extent. In summary, we concluded TCS1 alleles into three types with different functions and proposed a strategy to effectively enhance low-caffeine tea germplasms in breeding practices. This research provided an applicable technical avenue for accelerating the cultivation of specific low-caffeine tea plants.

15.
Hortic Res ; 9: uhac191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338849

RESUMO

Theacrine (1,3,7,9-tetramethyluric acid) is a natural product with remarkable pharmacological activities such as antidepressant, sedative and hypnotic activities, while caffeine (1,3,7-trimethylxanthine) has certain side effects to special populations. Hence, breeding tea plants with high theacrine and low caffeine will increase tea health benefits and promote consumption. In this study, we construct an F1 population by crossing 'Zhongcha 302' (theacrine-free) and a tea germplasm 'Ruyuan Kucha' (RY, theacrine-rich) to identify the causal gene for accumulating theacrine. The results showed that the content of theacrine was highly negatively correlated with caffeine (R2 > 0.9). Bulked segregant RNA sequencing analysis, molecular markers and gene expression analysis indicated that the theacrine synthase (TcS) gene was the candidate gene. The TcS was located in the nucleus and cytoplasm, and the theacrine can be detected in stably genetic transformed tobacco by feeding the substrate 1,3,7-trimethyluric acid. Moreover, an in vitro enzyme activity experiment revealed that the 241st amino acid residue was the key residue. Besides, we amplified the promoter region in several tea accessions with varied theacrine levels, and found a 234-bp deletion and a 271-bp insertion in RY. Both GUS histochemical analysis and dual-luciferase assay showed that TcS promoter activity in RY was relatively high. Lastly, we developed a molecular marker that is co-segregate with high-theacrine individuals in RY's offspring. These results demonstrate that the novel TcS allele in RY results in the high-theacrine and low-caffeine traits and the developed functional marker will facilitate the breeding of characteristic tea plants.

16.
Int J Biometeorol ; 66(12): 2449-2462, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36201038

RESUMO

In the context of continued global climate change, the intensity and frequency of droughts have increased to varying degrees in many places. Due to the complexity of drought events, the mechanisms by which trees respond to drought are not well understood. In this study, we analyzed the growth trends of Qinghai spruce (Picea crassifolia) at different elevations in the western part of Qilian Mountains and the dynamic response to climate change. We also compared the differences in radial growth of trees at different elevations in response to drought events in the growing and non-growing seasons based on resistance (Rt), recovery (Rc), and resilience (Rs). The results showed that (1) trees at all three elevations were limited by drought stress and the lower the elevation the more sensitive the trees were to drought. (2) The response of middle- and low-elevation trees to the standardized precipitation evaporation index in June of that year was stable. (3) Growing season drought limits radial growth of trees more than non-growing season drought, and Rt is smaller and Rc is larger at low elevations. With increasing drought severity, trees at all three elevations exhibited a trend of decreasing Rt and Rs and increasing Rc. (4) There were significant differences in the growth trends of trees at the three elevations. Therefore, we should continuously pay attention to the dynamics of the forest ecosystem in the western part of Qilian Mountains and take improved measures to cope with the adverse effects of drought on Qinghai spruce.


Assuntos
Picea , Secas , Ecossistema , Florestas , Árvores
17.
Food Chem X ; 15: 100363, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-35756461

RESUMO

The biomass of thinned unripe grape (TUR) was investigated and estimated in China and the world. In addition, the physicochemical parameters, nutritional and functional components and antioxidant activity of nine TUR and ripe grape fruit (RGF) samples were determined and analyzed. The results showed that about 1695.75 kt TUR was produced in China and as much as 14436.16 kt worldwide, which was closely related to the fruit thinning time. The total sugar and protein contents of TUR were significantly lower than those of RGF (p < 0.05), while the organic acids (especially tartaric acid and malic acid) and crude fiber of TUR were significantly higher than those of RGF (p < 0.05). Moreover, the total polyphenol, flavonoid, tannin and flavan-3-ols contents of TUR were 4.2-13.5, 3.6-12.3, 4.3-62.8 and 1.5-7.6 times those of RGF, respectively. Meanwhile, the antioxidant capacity of TUR was significantly higher than that of RGF, as well (p < 0.05). This study aimed to conduct in-depth research into the nutritional characteristics of TUR, propose the targeted direction for their further investigation and then lay a theoretical foundation from which the research findings could be applied in practice.

18.
Food Res Int ; 152: 110918, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35181089

RESUMO

As the concept of dietary health is gradually recognized by the public, on-the-spot monitoring of food safety and nutrition, tracing the source of food and individualized guidance of nutritional and healthy eating habits are becoming more and more important. The promotion and use of smartphones and their powerful functions have greatly changed our lives and are also expected to aid applications in food field. There are three types of applications of smartphones in terms of food: rapid food detection, food traceability systems, and personalized diet guidance. Rapid food testing is classified according to the types of test objects, including food quality and freshness, nutritional and functional ingredients, adulterated ingredients, food additives, enzyme activities, and harmful substances. The performance of detection methods and instruments is analyzed and their advantages and disadvantages are compared, determining the feasibility of a practical application. In addition, the process and principle of food traceability system in the field of food safety and individualized dietary guidance for different groups were analyzed based on practical examples. Finally, it analyzes the latest development of the application of smart phones in food and prospects the feasibility of the practical application in the future. It is expected to lay a theoretical foundation for the development of food-related fields such as rapid detection of food, tracing the source of food, and personal nutritional diet.


Assuntos
Terapia Nutricional , Smartphone , Dieta , Alimentos , Estado Nutricional
19.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34884850

RESUMO

SIMILAR TO RCD-ONEs (SROs) comprise a small plant-specific gene family which play important roles in regulating numerous growth and developmental processes and responses to environmental stresses. However, knowledge of SROs in sesame (Sesamum indicum L.) is limited. In this study, four SRO genes were identified in the sesame genome. Phylogenetic analysis showed that 64 SROs from 10 plant species were divided into two groups (Group I and II). Transcriptome data revealed different expression patterns of SiSROs over various tissues. Expression analysis showed that Group II SROs, especially SiSRO2b, exhibited a stronger response to various abiotic stresses and phytohormones than those in Group I, implying their crucial roles in response to environmental stimulus and hormone signals. In addition, the co-expression network and protein-protein interaction network indicated that SiSROs are associated with a wide range of stress responses. Moreover, transgenic yeast harboring SiSRO2b showed improved tolerance to salt, osmotic and oxidative stress, indicating SiSRO2b could confer multiple tolerances to transgenic yeast. Taken together, this study not only lays a foundation for further functional dissection of the SiSRO gene family, but also provides valuable gene candidates for genetic improvement of abiotic stress tolerance in sesame.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas de Plantas/metabolismo , Sesamum/metabolismo , Estresse Fisiológico , Família Multigênica , Proteínas Nucleares/classificação , Proteínas Nucleares/genética , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Mapas de Interação de Proteínas/genética , Elementos de Resposta/efeitos dos fármacos , Elementos de Resposta/genética , Sesamum/genética , Transcriptoma/efeitos dos fármacos
20.
Foods ; 10(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34574153

RESUMO

Fruit thinning is a cultivation technique that is widely applied in horticulture in order to obtain high-quality horticultural crops. This practice results in the discarding of a large number of thinned unripe fruits in orchards each year, which produces a great waste of agricultural resources and causes soil pollution that may be an important reservoir for pest and plant diseases. Current studies showed that bioactive compounds such as polyphenols, organic acids, monosaccharides and starches are present in unripe fruits. Therefore, we reviewed the bioactive components obtained from thinned unripe fruits, their revalorization for the food industry, their beneficial effects for human health and the methods for obtaining these components. We also performed a calculation of the costs and benefits of obtaining these bioactive compounds, and we proposed future research directions. This review provides a reference for the effective utilization and industrial development of thinned unripe fruits obtained from horticultural crops. Furthermore, revalorizing the waste from this cultural practice may increase the economic benefits and relieve the environmental stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA