Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 22(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38921566

RESUMO

Recently, there has been a growing interest in collagen peptides derived from marine sources for their notable ability to protect skin cells against apoptosis induced by oxidants. Therefore, the current study aimed to investigate the fundamental properties of collagen peptides, including their physicochemical, thermal, structural, stem-cell-regenerative, and skin-cell-protective effects, in comparison to commercial collagen peptides. The acid-soluble (ASC) and pepsin-soluble (PSC) collagens exhibited three distinct bands on SDS-PAGE, namely α (α1 and α2), ß, and γ chains, confirming a type I pattern. The thermal profiles obtained from TG and DSC analyses confirmed the denaturation of PSC and ASC at temperatures ranging from 51.94 to 56.4 °C and from 52.07 to 56.53 °C, respectively. The purified collagen peptides were analyzed using SDS-PAGE and MALDI-TOF mass spectrometry, revealing a mass range of 900-15,000 Da. Furthermore, the de novo peptide sequence analysis confirmed the presence of the Gly-X-Y repeating sequence in collagen peptides. Collagen peptide treatments significantly enhanced HFF-1 cell proliferation and migration compared to the control group. ELISA results confirmed the potential interactions between collagen peptides and HFF-1 cells through α2ß1, α10ß1, and α11ß1 integrin receptors. Notably, collagen peptide treatment effectively restored the proliferation of HFF-1 cells damaged by H2O2. Consequently, the advantageous characteristics of squid skin collagen peptides highlight their promising role in regenerative medicine.


Assuntos
Colágeno , Decapodiformes , Fibroblastos , Peróxido de Hidrogênio , Peptídeos , Pele , Animais , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/toxicidade , Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Decapodiformes/química , Pele/efeitos dos fármacos , Pele/metabolismo , Humanos , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Linhagem Celular , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Movimento Celular/efeitos dos fármacos
2.
FASEB J ; 38(13): e23747, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38924451

RESUMO

In this study, fibrinolytic protease was isolated and purified from Perinereis aibuhitensis Grub, and the extraction process was optimized. The properties of the enzyme, such as the amino acid composition, thermal stability, optimal temperature, and pH, were investigated. After detoxification, proteins collected from fresh Clamworm (Perinereis aibuhitensis Grub) were concentrated via ammonium sulfate precipitation. The crude protease was purified using gel filtration resin (Sephadex G-100), anion exchange resin (DEAE-Sepharose FF), and hydrophobic resin (Phenyl Sepharose 6FF). The molecular weight of the protease was determined by polyacrylamide gel electrophoresis (SDS-PAGE). The optimum temperature and optimum pH of the protease were determined. The activity of crude protease in the 40-60% salt-out section was the highest, reaching 467.53 U/mg. The optimal process for purifying crude protein involved the application of DEAE-Sepharose FF and Phenyl Sepharose 6FF, which resulted in the isolation of a single protease known as Asp60-D1-P1 with the highest fibrinolytic activity; additionally, the enzyme activity was measured at 3367.76 U/mg. Analysis by Native-PAGE and SDS-PAGE revealed that the molecular weight of Asp60-D1-P1 was 44.5 kDa, which consisted of two subunits with molecular weights of 6.5 and 37.8 kDa, respectively. The optimum temperature for Asp60-D1-P1 was 40°C, and the optimal pH was 8.0.


Assuntos
Fibrinolisina , Animais , Concentração de Íons de Hidrogênio , Fibrinolisina/metabolismo , Fibrinolisina/isolamento & purificação , Poliquetos/enzimologia , Temperatura , Peso Molecular , Estabilidade Enzimática , Metais/farmacologia , Eletroforese em Gel de Poliacrilamida , Fibrinolíticos/isolamento & purificação , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Fibrinolíticos/metabolismo
3.
Mar Drugs ; 22(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38393039

RESUMO

Marine organisms are a rich source of enzymes that exhibit excellent biological activity and a wide range of applications. However, there has been limited research on the proteases found in marine mudflat organisms. Based on this background, the marine fibrinolytic enzyme FELP, which was isolated and purified from clamworm (Perinereis aibuhitensis), has exhibited excellent fibrinolytic activity. We demonstrated the FELP with a purification of 10.61-fold by precipitation with ammonium sulfate, ion-exchange chromatography, and gel-filtration chromatography. SDS-PAGE, fibrin plate method, and LC-MS/MS indicated that the molecular weight of FELP is 28.9 kDa and identified FELP as a fibrinolytic enzyme-like protease. FELP displayed the maximum fibrinolytic activity at pH 9 (407 ± 16 mm2) and 50 °C (724 ± 27 mm2) and had excellent stability at pH 7-11 (50%) or 30-60 °C (60%), respectively. The three-dimensional structure of some amino acid residues of FELP was predicted with the SWISS-MODEL. The fibrinolytic and fibrinogenolytic assays showed that the enzyme possessed direct fibrinolytic activity and indirect fibrinolysis via the activation of plasminogen; it could preferentially degrade Aα-chains of fibrinogen, followed by Bß- and γ-chains. Overall, the fibrinolytic enzyme was successfully purified from Perinereis aibuhitensis, a marine Annelida (phylum), with favorable stability that has strong fibrinolysis activity in vitro. Therefore, FELP appears to be a potent fibrinolytic enzyme with an application that deserves further investigation.


Assuntos
Fibrinolisina , Poliquetos , Animais , Cromatografia Líquida , Concentração de Íons de Hidrogênio , Espectrometria de Massas em Tandem , Serina Proteases/metabolismo , Poliquetos/metabolismo , Fibrinolíticos/química , Temperatura , Peso Molecular
4.
Int J Biol Macromol ; 247: 125772, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37429348

RESUMO

Collagens from marine sources have been used widely in food, cosmetics and tissue engineering application due to their excellent functional and biological properties. In the present study, a novel protein, collagen from iris squid skin (SSC) was characterized, grafted with polyethylene-glycol (PEG) and Acid-Green 20 (AG) and was investigated the molecular signaling pathways in L-929 fibroblast cells along with their structural peptide analogs. SDS-PAGE and IR spectrum of SSC analysis showed the typical structure of type I collagen. The fibroblast proliferation was evaluated for SSC, SSC grafted PEG (SSC-PEG) and their structural analogs including Gly-Pro-Leu-Gly-Leu-Leu (PEP1), Gly-Pro-Leu-Gly-Leu-Leu-Gly-Phe-Leu (PEP2), Gly-Pro-Leu-Gly-Leu-Leu-Gly-Phe-Leu-Gly-Pro-Leu (PEP3) and Gly-Pro-Leu-Gly-Leu-Leu-Gly-Phe-Leu-Gly-Pro-Leu-Gly-Leu-Ser (PEP4). The optimal concentration of SSC and its derivative was 0.07 µ mol/L. The fibroblast growth-promoting factors were promoted by all the treatment groups by accelerating the PI3K/AKT and Ras/RAF/MAPK signaling pathways in L-929 cells, and inhibiting the secretion of apoptotic factors. Compared to the control group, mRNA and protein expression of AKT in the PI3K/AKT and Ras in Ras/RAF/MAPK signaling pathway were accelerated significantly by PEP4, respectively, while the Bax value was significantly lower (P < 0.01). The promoting effect of PEP1, PEP2, PEP3 and PEP4 on L-929 cells was closely related to the length of the peptides. Therefore, this study disclosed that PEP1, PEP2, PEP3 and PEP4 were novel analogs that greatly promote the proliferation of L-929 cells through PI3K/AKT and Ras/RAF/MAPK signaling pathways.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sequência de Aminoácidos , Peptídeos/farmacologia , Fatores de Crescimento de Fibroblastos , Transdução de Sinais , Colágeno , Fibroblastos/metabolismo , Proliferação de Células
5.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298062

RESUMO

Marine collagen (MC) has recently attracted more attention in tissue engineering as a biomaterial substitute due to its significant role in cellular signaling mechanisms, especially in mesenchymal stem cells (MSCs). However, the actual signaling mechanism of MC in MSC growth, which is highly influenced by their molecular pattern, is poorly understood. Hence, we investigated the integrin receptors (α1ß1, α2ß1, α10ß1, and α11ß1) binding mechanism and proliferation of MCs (blacktip reef shark collagen (BSC) and blue shark collagen (SC)) compared to bovine collagen (BC) on MSCs behavior through functionalized collagen molecule probing for the first time. The results showed that BSC and SC had higher proliferation rates and accelerated scratch wound healing by increasing migratory rates of MSCs. Cell adhesion and spreading results demonstrated that MC had a better capacity to anchor MSCs and maintain cell morphology than controls. Living cell observations showed that BSC was gradually assembled by cells into the ECM network within 24 h. Interestingly, qRT-PCR and ELISA revealed that the proliferative effect of MC was triggered by interacting with specific integrin receptors such as α2ß1, α10ß1, and α11ß1 of MSCs. Accordingly, BSC accelerated MSCs' growth, adhesion, shape, and spreading by interacting with specific integrin subunits (α2 and ß1) and thereby triggering further signaling cascade mechanisms.


Assuntos
Células-Tronco Mesenquimais , Tubarões , Animais , Bovinos , Camundongos , Integrinas/metabolismo , Colágeno/metabolismo , Adesão Celular , Células-Tronco Mesenquimais/metabolismo , Tubarões/metabolismo
6.
Small ; 19(41): e2300359, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37292051

RESUMO

Dentin hypersensitivity (DH) is a common symptom of various dental diseases that usually produces abnormal pain with external stimuli. Various desensitizers are developed to treat DH by occluding dentine tubules (DTs) or blocking intersynaptic connections of dental sensory nerve cells. However, the main limitations of currently available techniques are the chronic toxic effects of chemically active ingredients and their insufficiently durable efficacy. Herein, a novel DH therapy with remarkable biosafety and durable therapeutic value based on ß-chitooligosaccharide graft derivative (CAD) is presented. Particularly, CAD indicates the most energetic results, restoring the amino polysaccharide protective membrane in DTs, significantly promoting calcium and phosphorus ion deposition and bone anabolism, and regulating the levels of immunoglobulin in saliva and cellular inflammatory factors in plasma. Exposed DTs are occluded by remineralized hydroxyapatite with a depth of over 70 µm, as shown in in vitro tests. The bone mineral density of Sprague-Dawley rats' molar dentin increases by 10.96%, and the trabecular thickness of bone improves to about 0.03 µm in 2 weeks in the CAD group compared to the blank group. Overall, the ingenious concept that modified marine biomaterial can be a safe and durable therapy for DH is demonstrated by nourishing and remineralizing dentin.


Assuntos
Sensibilidade da Dentina , Ratos , Animais , Sensibilidade da Dentina/tratamento farmacológico , Dentina , Ratos Sprague-Dawley , Cálcio , Microscopia Eletrônica de Varredura
7.
Mar Drugs ; 21(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37233454

RESUMO

Numerous studies have shown that type II collagen (CII) has a potential role in the treatment of rheumatoid arthritis. However, most of the current studies have used terrestrial animal cartilage as a source of CII extraction, with fewer studies involving marine organisms. Based on this background, collagen (BSCII) was isolated from blue shark (Prionace glauca) cartilage by pepsin hydrolysis and its biochemical properties including protein pattern, total sugar content, microstructure, amino acid composition, spectral characteristics and thermal stability were further investigated in the present study. The SDS-PAGE results confirmed the typical characteristic of CII, comprising three identical α1 chains and its dimeric ß chain. BSCII had the fibrous microstructure typical of collagen and an amino acid composition represented by high glycine content. BSCII had the typical UV and FTIR spectral characteristics of collagen. Further analysis revealed that BSCII had a high purity, while its secondary structure comprised 26.98% of ß-sheet, 35.60% of ß-turn, 37.41% of the random coil and no α-helix. CD spectra showed the triple helical structure of BSCII. The total sugar content, denaturation temperature and melting temperature of BSCII were (4.20 ± 0.03)%, 42 °C and 49 °C, respectively. SEM and AFM images confirmed a fibrillar and porous structure of collagen and denser fibrous bundles formed at higher concentrations. Overall, CII was successfully extracted from blue shark cartilage in the present study, and its molecular structure was intact. Therefore, blue shark cartilage could serve as a potential source for CII extraction with applications in biomedicine.


Assuntos
Colágeno , Tubarões , Animais , Colágeno Tipo II/análise , Colágeno/química , Aminoácidos/metabolismo , Cartilagem/química , Tubarões/metabolismo , Açúcares/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-33488754

RESUMO

BACKGROUND: Yisui Qinghuang powder (YSQHP) is an effective traditional Chinese medicinal formulation used for the treatment of myelodysplastic syndromes (MDS). However, its pharmacological mechanism of action is unclear. MATERIALS AND METHODS: In this study, the active compounds of YSQHP were screened using the traditional Chinese medicine systems pharmacology (TCMSP) and HerDing databases, and the putative target genes of YSQHP were predicted using the STITCH and DrugBank databases. Then, we further screened the correlative biotargets of YSQHP and MDS. Finally, the compound-target-disease (C-T-D) network was conducted using Cytoscape, while GO and KEGG analyses were conducted using R software. Furthermore, DDI-CPI, a web molecular docking analysis tool, was used to verify potential targets and pathways. Finally, binding site analysis was performed to identify core targets using MOE software. RESULTS: Our results identified 19 active compounds and 273 putative target genes of YSQHP. The findings of the C-T-D network revealed that Rb1, CASP3, BCL2, and MAPK3 showed the most number of interactions, whereas indirubin, tryptanthrin, G-Rg1, G-Rb1, and G-Rh2 showed the most number of potential targets. The GO analysis showed that 17 proteins were related with STPK activity, PUP ligase binding, and kinase regulator activity. The KEGG analysis showed that PI3K/AKT, apoptosis, and the p53 pathways were the main pathways involved. DDI-CPI identified the top 25 proteins related with PI3K/AKT, apoptosis, and the p53 pathways. CASP8, GSK3B, PRKCA, and VEGFR2 were identified as the correlative biotargets of DDI-CPI and PPI, and their binding sites were found to be indirubin, G-Rh2, and G-Rf. CONCLUSION: Taken together, our results revealed that YSQHP likely exerts its antitumor effects by binding to CASP8, GSK3B, PRKCA, and VEGFR2 and by regulating the apoptosis, p53, and PI3K/AKT pathways.

9.
Environ Technol ; 33(22-24): 2525-30, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23437650

RESUMO

This study evaluated the effects of Al-coagulant sludge characteristics on the efficiency ofcoagulant recovery by acidification with H2SO4. Two sludge characteristics were studied: types of coagulant and textures of the suspended solid in raw water. The coagulant types are aluminium sulphate and polyaluminium chloride (PACl); the textures of the suspended solid are sand-based and clay-based. Efficiency of aluminium recovery at a pH of 2 was compared for different sludges obtained from water treatment plants in Taiwan. The results showed that efficiency of aluminium recovery from sludge containing clayey particles was higher than that from sludge containing sandy particles. As for the effect of coagulant types, the aluminium recovery efficiency for sludge using PACl ranged between 77% and 100%, whereas it ranged between 65% and 72% for sludge using aluminium sulphate as the coagulant. This means using PACl as the coagulant could result in higher recovery efficiency of coagulant and be beneficial for water treatment plants where renewable materials and waste reduction as the factors for making decisions regarding plant operations. However, other metals, such as manganese, could be released with aluminium during the acidification process and limit the use of the recovered coagulants. It is suggested that the recovered coagulants be used in wastewater treatment processes.


Assuntos
Ácidos/química , Alumínio/química , Esgotos , Sedimentos Geológicos/química , Metais Pesados/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA