Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Biol Macromol ; 279(Pt 4): 135569, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276902

RESUMO

Flexible sensors play an important role in the field of smart devices. However, most flexible sensors suffer from poor sensing signal stability and monofunction. In this study, a multifunctional film (named PM) with dual conductive network structure was fabricated by nanocellulose crystal dispersed with silver nanoparticles and carbon nanotube. The PM film exhibited excellent conductivity (24.6 S/m) along with antimicrobial effects against Staphylococcus aureus and Escherichia coli. Furthermore, the PM sensor showed excellent electrothermal performance, reaching 133.1 °C within 50 s at 12 V, and an excellent temperature coefficient of resistance (TCR = -0.65 % °C-1) over a temperature range of 36-124 °C. More importantly, the PM sensor demonstrated a high strain sensitivity (GF = 1.66) and durability (320 cycles), capable of detecting minute human body movements at a strain as low as 1 %. Additionally, the PM sensor maintained a stable sensing performance even after 30 d of exposure to air. Therefore, the multifunctional integration of the PM sensor shows great potential for application in the field of flexible electronics.

2.
BMC Med Educ ; 24(1): 675, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890615

RESUMO

BACKGROUND: The aim of this study was to evaluate the effectiveness of team-, case-, lecture-, and evidence-based learning (TCLEBL) methods in cultivating students' clinical and research abilities, as compared to traditional lecture-based learning (LBL) approaches. METHODS: Forty-one medical postgraduates were divided into two groups, a TCLEBL group and an LBL group. Teaching effectiveness was evaluated through student- and teacher-feedback questionnaires, scores from theoretical examinations and written literature reviews, and student learning burdens. RESULTS: Compared to the LBL approach, both teachers and students were more satisfied with the TCLEBL model (p < 0.001 for both teachers and students). The TCLEBL group performed significantly higher on the theory test compared to the LBL group (p = 0.009). There were significant differences between the LBL and TCLEBL groups, respectively, in terms of literature review and citations (12.683 ± 2.207 vs. 16.302 ± 1.095, p < 0.001), argument and perspective (12.55 ± 1.572 vs. 16.333 ± 1.354, p < 0.001), comprehensiveness of content (13.3 ± 2.268 vs. 16.683 ± 1.344, p < 0.001), and scientific rigor and accuracy (10.317 ± 1.167 vs. 12.746 ± 0.706, p < 0.001). There was no significant difference in the total extracurricular time expended between the two groups (323.75 ± 30.987 min vs. 322.619 ± 24.679 min, respectively for LBL vs. TCLEBL groups, p = 0.898). CONCLUSIONS: TCLEBL is an effective teaching method that cultivates students' clinical and research abilities.


Assuntos
Aprendizagem Baseada em Problemas , Humanos , Estudantes de Medicina/psicologia , Avaliação Educacional , Educação de Pós-Graduação em Medicina , Masculino , Feminino , Ensino , Inquéritos e Questionários
3.
Int J Biol Macromol ; 267(Pt 2): 131541, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614183

RESUMO

Developing high-performance hydrogels with anti-freeze, and antimicrobial properties is crucial for the practical application of flexible sensors. In this study, we prepared silver nanoparticles (AgNPs) with aloe polysaccharide (AP) as a reducing agent. Then, the AP/AgNPs were added to a system of polyvinyl alcohol and borax crosslinked in water/glycerol to obtain a multifunctional conductive hydrogel. The incorporated AgNPs improved the conductivity (0.39 S/m) and mechanical properties (elongation at break: 732.9 %, fracture strength: 1267.6 kPa) of the hydrogel. In addition, resultant hydrogel exhibited potential for sensing strain, temperature, and humidity. When used as a strain sensor, the hydrogel system exhibited low detection limit (0.1 %), and fast response (0.08 s). The resistance of the hydrogel decreased with an increase in the absorbed moisture content, enabling humidity detection (25-95 %) to monitor breathing status. As a temperature sensor, the hydrogel supported a wide detection range (-50 to +90 °C) and sensitivity (-30-0 °C, temperature coefficient of resistance (TCR) = -5.64 %/°C) to detect changes in the ambient temperature. This study proposes a simple method for manufacturing multifunctional hydrogel sensors, which broadens their application prospects in wearable sensing and electronic products.


Assuntos
Aloe , Hidrogéis , Nanopartículas Metálicas , Nanocompostos , Polissacarídeos , Prata , Prata/química , Nanopartículas Metálicas/química , Aloe/química , Polissacarídeos/química , Nanocompostos/química , Hidrogéis/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Temperatura , Umidade , Boratos
4.
Int J Biol Macromol ; 266(Pt 1): 131004, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521327

RESUMO

Biomass-based flexible sensors with excellent mechanical and sensing properties have attracted significant attention. In this study, based on the excellent dispersibility and degradability of nanocellulose crystals, we designed a polyvinyl alcohol/nanocellulose crystals/phytic acid (PCP) composite film with good flexibility and high sensitivity to humidity. A layer of multiwalled carbon nanotubes (MWCNT) and nanocellulose crystals (CNC) was further sandwiched between two PCP layers as a flexible multifunctional sensor (PCPW) to detect human movement and respiration. Phytic acid contains abundant phosphate groups that enhance proton conduction, allowing the PCPW composite film to change its electrical resistance in a sensitive and repeatable manner when the relative humidity was varied between 35 %-93 %. Meanwhile, CNC derived from sisal fibers enhanced the PCPW sensor's conductivity (3.3 S/m) and mechanical properties (elongation at break: 99 %) by improving the dispersion and connectivity of MWCNT. The PCPW sensor displayed a high sensitivity to strain (gauge factor: 49.5) and could monitor both facial expressions (smiling and winking) and the bending of joints. The sensor also generated stable electrical responses during breathing and blowing due to the change in humidity. Therefore, this biodegradable and multifunctional sensor has good application prospects.


Assuntos
Celulose , Umidade , Nanotubos de Carbono , Celulose/química , Humanos , Nanotubos de Carbono/química , Respiração , Movimento , Álcool de Polivinil/química
5.
Environ Sci Pollut Res Int ; 31(13): 20488-20498, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38376779

RESUMO

Anaerobic ammonium oxidation (anammox) sludge is easily deactivated in the process of treating ammonia-laden wastewater. To investigate an effective recovery method, red mud-based biochar carriers (RMBC) were prepared and added to a deactivated anammox reactor; the operation of this reactor had been interrupted for 6 months with starvation and low temperature. The deactivated sludge with added RMBC was recovered rapidly after 31 days, with the specific anammox activity rapidly increasing to 0.84 g N/(g VSS∙day), and the recovery efficiency of nitrogen removal rate increased by four times compared to the unadded control. The granulation degree and extracellular polymeric substances secretion of the anammox sludge with the added RMBC were significantly higher than that of the control group. In addition, a large number of spherical anammox bacteria were observed moored at the porous channels of RMBC, and the copy numbers of functional genes of anammox bacteria were approximately twice that of the control group. Hence, RMBC is a potential sludge activator, and it can provide a "house" to protect anammox bacteria, enhance the metabolic activity and the agglomerative growth of anammox bacteria, and synergistically achieve rapid recovery of deactivated anammox sludge.


Assuntos
Compostos de Amônio , Carvão Vegetal , Esgotos , Esgotos/microbiologia , Oxidação Anaeróbia da Amônia , Oxirredução , Águas Residuárias , Bactérias/metabolismo , Anaerobiose , Nitrogênio/metabolismo , Reatores Biológicos/microbiologia , Desnitrificação
6.
Int J Biol Macromol ; 257(Pt 2): 128735, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092111

RESUMO

This paper reports the fabrication of flexible films loaded with Ag nanoparticles (Ag NPs) and annotated as POPA films from polyvinyl alcohol, okra polysaccharides, phytic acid, and AgNO3 via an in situ reduction and solution-casting method. The prepared films exhibit strain, temperature, and humidity sensing. As a flexible strain sensor, the POPA sensor has a wide strain sensing range (1-250 %), and fast response/recovery (0.22/0.28 s), while as a temperature sensor, it senses the human body temperature and exhibits excellent temperature sensitivity (TCR = -1.401 % °C-1) and good linearity (R2 = 0.994) in the temperature range of 30-55 °C. Additionally, in the relative humidity (RH) of range 35-95 %, the POPA humidity sensor outputs stable electrical signals during adsorption and desorption. Moreover, it exhibits low hysteresis values (3.19 % RH) and good linearity (R2 = 0.989) for the detection of breathing rates during different human body states. Consequently, the POPA sensor exhibits good stability, repeatability, and reversibility for strain, temperature, and humidity sensing. The designed multifunctional POPA sensor thus holds great potential for its application in flexible wearable devices and electronics.


Assuntos
Abelmoschus , Nanopartículas Metálicas , Humanos , Prata , Adsorção , Polissacarídeos
7.
Int J Biol Macromol ; 254(Pt 2): 127931, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944728

RESUMO

Conductive hydrogels have limitations such as non-degradability, loss of electrical conductivity at sub-zero temperatures, and single functionality, which limit their applicability as materials for wearable sensors. To overcome these limitations, this study proposes a bio-based hydrogel using aloe polysaccharides as the matrix and degradable polyvinyl alcohol as a reinforcing material. The hydrogel was crosslinked with borax in a glycerol-water binary solvent system, producing good toughness and compressive strength. Furthermore, the hydrogel was developed as a sensor that could detect both small and large deformations with a low detection limit of 1 % and high stretchability of up to 300 %. Moreover, the sensor exhibited excellent frost resistance at temperatures above -50 °C, and the gauge factor of the hydrogel was 2.86 at 20 °C and 2.12 at -20 °C. The Aloe-polysaccharide-based conductive hydrogels also functioned effectively as a wearable sensor; it detected a wide range of humidities (0-98 % relative humidity) and exhibited fast response and recovery times (1.1 and 0.9 s) while detecting normal human breathing. The polysaccharide hydrogel was also temperature sensitive (1.737 % °C-1) and allowed for information sensing during handwriting.


Assuntos
Aloe , Dispositivos Eletrônicos Vestíveis , Humanos , Hidrogéis , Condutividade Elétrica , Íons , Polissacarídeos
8.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37861397

RESUMO

A Gram-stain-negative, aerobic, rod-shaped, nonmotile and yellow-pigmented bacterium designated E7-10T was isolated from a bleached scleractinian coral Porites lutea. Strain E7-10T grew with 1.0-8.0 % (w/v) NaCl (optimum, 4.0 %), at 18-41 °C (optimum, 28 °C) and at pH 6.0-10.0 (optimum, pH 8.0). Phylogenetic analysis using 16S rRNA gene sequences revealed that E7-10T formed a lineage within the genus Hoeflea, but it was distinct from the closest species 'Hoeflea prorocentri' PM5-8T, showing 98.01 % sequence similarity. The predominant cellular fatty acids of E7-10T were summed feature 8 (26.7 %), C18 : 1 ω7c 11-methyl (26.2 %), C16 : 0 (20.8 %) and C19 : 0 cyclo ω8c (17.9 %). The major respiratory quinone was Q-10. The polar lipids mainly comprised phosphatidylethanolamine, two glycolipids and five phospholipids. The genome size of E7-10T was 5.58 Mb with G+C content 60.27 mol%. The digital DNA-DNA hybridization and average nucleotide identity values between the genomes of strains E7-10T and PM5-8T were 19.50 and 75.95 %, respectively, which were both below the defined cutoff values (70 % and 95-96 %, respectively) for species delimitation. Thus, strain E7-10T represents a novel species within the genus Hoeflea, for which the name Hoeflea poritis sp. nov. is proposed. The type strain is E7-10T (=JCM 35852T=MCCC 1K08229T).


Assuntos
Antozoários , Phyllobacteriaceae , Animais , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Ubiquinona/química , Composição de Bases , DNA Bacteriano/genética , Análise de Sequência de DNA , Fosfolipídeos/química
9.
Int J Biol Macromol ; 253(Pt 1): 126476, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37625760

RESUMO

Polyvinyl alcohol (PVA) and okra polysaccharide (OP) are biodegradable polymers with high hydrophilicity and good biocompatibility with potential for use as flexible humidity-sensitive materials. Herein, biodegradable flexible composite films (named POP films) were prepared from PVA, OP, and phytic acid using a solution-casting method based on. POP films exhibited excellent mechanical strength, flexibility, flame retardancy, water resistance, humidity response, and humidity-sensing characteristics. Notably, the POP humidity sensors exhibited a hysteresis value of 1.88 % relative humidity for the adsorption and desorption processes and good sensitivity over a wide humidity range of 35-95 %. In addition, the humidity sensor distinguished the frequency of nose breathing, and its response and recovery times were 0.9 and 1.98 s, respectively. The excellent performance of POP sensors in monitoring humidity and human respiratory rates demonstrates the sensor's potential for wearable smart devices.


Assuntos
Abelmoschus , Álcool de Polivinil , Humanos , Polímeros , Adsorção , Polissacarídeos
10.
Molecules ; 28(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37513316

RESUMO

The present study aimed to optimize the process for extracting cellulose nanocrystals (CNCs) from sugarcane bagasse through ultrasonic-assisted sulfuric acid hydrolysis and its subsequent modification with L-malic acid and silane coupling agent KH-550. The effects of the different modification methods and the order of modification on the structures and properties of bagasse CNCs were explored. The results indicated that the optimal process conditions were achieved at an acid-digestion temperature of 50 °C, a reaction time of 70 min, an ultrasonic power of 250 W, and a volume fraction of 55%. The modified CNCs were analyzed using infrared spectral, X-ray diffraction, and thermogravimetric techniques, which revealed that L-malic acid was attached to the hydroxyl group on the CNCs via ester bond formations, and the silane coupling agent KH-550 was adsorbed effectively on the CNCs' surfaces. Moreover, it was observed that the modification of the CNCs by L-malic acid and the KH-550 silane coupling agent occurred only on the surface, and the esterification-crosslinking modification method provided the best thermal stability. The performance of self-made CNC was found to be superior to that of purchased CNC based on the transmission electron microscopy analysis. Furthermore, the modified esterified-crosslinked CNCs exhibited the best structure and performance, thereby offering a potential avenue for the high-value utilization of sugarcane bagasse, a byproduct of sugarcane sugar production, and the expansion of the comprehensive utilization of sugarcane bagasse.

11.
Membranes (Basel) ; 13(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37367775

RESUMO

The ubiquitous presence of tetrabromobisphenol A (TBBPA) in aquatic environments has caused severe environmental and public health concerns; it is therefore of great significance to develop effective techniques to remove this compound from contaminated waters. Herein, a TBBPA imprinted membrane was successfully fabricated via incorporating imprinted silica nanoparticles (SiO2 NPs). The TBBPA imprinted layer was synthesized on the 3-(methacryloyloxy) propyltrimethoxysilane (KH-570) modified SiO2 NPs via surface imprinting. Eluted TBBPA molecularly imprinted nanoparticles (E-TBBPA-MINs) were incorporated onto a polyvinylidene difluoride (PVDF) microfiltration membrane via vacuum-assisted filtration. The obtained E-TBBPA-MINs embedded membrane (E-TBBPA-MIM) showed appreciable permeation selectivity toward the structurally analogous to TBBPA (i.e., 6.74, 5.24 and 6.31 of the permselectivity factors for p-tert-butylphenol (BP), bisphenol A (BPA) and 4,4'-dihydroxybiphenyl (DDBP), respectively), far superior to the non-imprinted membrane (i.e., 1.47, 1.17 and 1.56 for BP, BPA and DDBP, respectively). The permselectivity mechanism of E-TBBPA-MIM could be attributed to the specific chemical adsorption and spatial complementation of TBBPA molecules by the imprinted cavities. The resulting E-TBBPA-MIM exhibited good stability after five adsorption/desorption cycles. The findings of this study validated the feasibility of developing nanoparticles embedded molecularly imprinted membrane for efficient separation and removal of TBBPA from water.

12.
Microbiol Resour Announc ; 12(5): e0001823, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37014224

RESUMO

Here, we report the draft genome sequences of Hoeflea sp. strain E7-10 and Hoeflea prorocentri PM5-8, isolated from a bleached hard coral and a culture of marine dinoflagellate, respectively. Genome sequencing for host-associated isolates Hoeflea sp. E7-10 and H. prorocentri PM5-8 can provide basic genetic information to explore potential roles in their hosts.

13.
Front Bioeng Biotechnol ; 11: 1133613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970610

RESUMO

Current microbial reduction technologies have been proven to be suitable for decontaminating industrial wastewaters containing high concentrations of selenium (Se) oxyanions, however, their application is strictly limited by the elemental Se (Se0) accumulation in the system effluents. In this work, a continuous-flow anaerobic membrane bioreactor (AnMBR) was employed for the first time to treat synthetic wastewater containing 0.2 mM soluble selenite (SeO3 2-). The SeO3 2- removal efficiency by the AnMBR was approachable to 100% in most of the time, regardless of the fluctuation in influent salinity and sulfate (SO4 2-) stress. Se0 particles were always undetectable in the system effluents, owing to their interception by the surface micropores and adhering cake layer of membranes. High salt stress led to the aggravated membrane fouling and diminished content ratio of protein to polysaccharide in the cake layer-contained microbial products. The results of physicochemical characterization suggested that the sludge-attached Se0 particles presented either sphere- or rod-like morphology, hexagonal crystalline structure and were entrapped by the organic capping layer. According to the microbial community analysis, increasing influent salinity led to the diminished population of non-halotolerant Se-reducer (Acinetobacter) and increased abundance of halotolerant sulfate reducing bacteria (Desulfomicrobium). In the absence of Acinetobacter, the efficient SeO3 2- abatement performance of the system could still be maintained, as a result of the abiotic reaction between SeO3 2- and S2- generated by Desulfomicrobium, which then gave rise to the production of Se0 and S0.

14.
Microbiol Spectr ; 10(4): e0101622, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35913204

RESUMO

Complete ammonia oxidizers (comammox) have been widely detected in riverine and estuarine ecosystems. However, knowledge about the process of comammox community assembly from freshwater to marine environments is still limited. Here, based on deep sequencing, we investigated the community composition of comammox along a salinity gradient in the Pearl River Estuary (PRE), South China. Our results showed that comammox microorganisms in the PRE sediments were extremely diverse and displayed distinct distributional patterns between upstream and downstream habitats. Quantitative PCR demonstrated that comammox was the dominant ammonia-oxidizing microorganism (AOM) in the PRE upstream sediments, and ammonia-oxidizing archaea (AOA) dominated the PRE downstream sediments, while ammonia-oxidizing bacteria (AOB) were not dominant in any section of the PRE. Neutral modeling revealed that stochastic processes explained a limited part of the variation in the comammox community. The majority of beta nearest-taxon index values were higher than 2, indicating that comammox community assembly in the PRE sediments was better explained through a deterministic process than through a stochastic process. Salinity and total nitrogen were the most important contributing factors that shaped the comammox community. This study expanded the current knowledge of the diversity and niche preference of comammox in the estuarine ecosystem, and further enhances our understanding of the assembly of comammox community from freshwater to marine environments. IMPORTANCE Microbial communities are shaped by stochastic (emigration, immigration, birth, death, and genetic drift of species) and deterministic (e.g., environmental factors) processes. However, it remains unknown as to which type of process is more important in influencing the comammox community assembly from freshwater to marine environments. In this study, we compared the relative importance of stochastic and deterministic processes in shaping the assembly of the comammox community, which demonstrated that the deterministic process was more important in determining the community assembly patterns in the PRE ecosystem.


Assuntos
Amônia , Ecossistema , Archaea/genética , Bactérias/genética , Estuários , Oxirredução , Filogenia
15.
Chemosphere ; 303(Pt 1): 134875, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35537631

RESUMO

CO2 is a proven pH regulator in hydrogen-based membrane biofilm reactor (H2-MBfR) but how its pressure regulates microbial competition in this system remains unclear. This work evaluates the CO2 pressure dependent system performance, CO2 allocation, microbial structure and activity of CO2 source H2-MBfR. The optimum system performance was reached at the CO2 pressure of 0.008 MPa, and this pressure enabled 0.18 g C/(m2·d) of dissolved inorganic carbon (DIC) allocated to denitrifying bacteria (DNB) for carbon source anabolism and denitrification-related proton compensation, while inducing a bulk liquid pH (pH 7.4) in favor of DNB activity by remaining 0.21 g C/(m2·d) of DIC as pH buffer. Increasing CO2 pressure from 0.008 to 0.016 MPa caused the markedly changed DNB composition, and the diminished DNB population was accompanied by the enrichment of sulfate-reducing bacteria (SRB). A high CO2 pressure of 0.016 MPa was estimated to induce the enhanced SRB activity and weakened DNB activity.


Assuntos
Desnitrificação , Hidrogênio , Bactérias , Biofilmes , Reatores Biológicos/microbiologia , Carbono , Dióxido de Carbono , Hidrogênio/química
16.
Biodegradation ; 33(3): 239-253, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35461432

RESUMO

This study constructed an up-flow anaerobic column reactor fed with synthetic sulfate-rich cadmium (Cd(II))-bearing wastewater, for investigating its Cd(II) removal performance and mechanism. Long-term experiment results manifest that introducing Cd(II) into influent led to an enhanced sulfate removal but did not increase the effluent sulfide concentration, implying the CdS formation. When influent Cd(II) concentration was shifted from 50 to 100 mg/L, the median Cd(II) removal rate was increased from 13.6 to 32.2 mg/(L·d). Batch tests indicate that the uptake and sequestration function of anaerobes merely led to a small portion of Cd(II) removal. A majority of aqueous Cd(II) (86.3%) was eliminated by precipitation reactions. The generated precipitates were found to be dominantly presented in carbonate, Fe-Mn oxide, sulfide bound and residue forms, which account for 92.6-93.9% of total Cd content of sludge obtained at diverse operation phases. The crystallographic CdS (i.e., residue fraction) particles have nano-scale sizes, and the relatively high atomic ratio of S to Cd was likely due to the adsorption/deposition of other sulfides. The dominant sulfate-reducing bacteria (SRB) were recognized as Desulfurella, Desulforhabdus and Desulfovibrio, and the primary competitor with them for substrate utilization were identified to be methanogens.


Assuntos
Microbiota , Purificação da Água , Anaerobiose , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Cádmio , Sulfatos/metabolismo , Sulfetos/química , Purificação da Água/métodos
17.
Ecotoxicology ; 30(8): 1719-1730, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33792797

RESUMO

Autotrophic ammonium removal by sulfate-dependent anaerobic ammonium oxidation (S-Anammox) process was studied in an upflow anaerobic sludge bed reactor inoculated with Anammox sludge. Over an operation period of 371 days, the reactor with a hydraulic retention time of 16 h was fed with influent in which NH4+ concentration was fixed at 70 mg N L-1, and the molar ratio of NO2-:NO3-:SO42- was 1:0.2:0.2, 0.5:0.1:0.3 and 0:0:0.5 in stages I, II and III, respectively. As the NO2- in influent was entirely replaced by SO42-, the NH4+ removal rate was 31.02 mg N L-1 d-1, and the conversion rate of SO42- was 8.18 mg S L-1 d-1. On grounds of the high NH4+:SO42- removal ratio (8.67:1), the S2- accumulation and pH drop in effluent, as well as the analysis results of microbial community structure, the S-Anammox process was speculated to play a dominant role in stage III. The NH4+ over-transformation was presumably as a consequence of the cyclic regeneration of SO42-. Concerning the microbial characteristics in the system, the Anammox bacteria (Candidatus Brocadia), sulfate-reducing bacteria (SRB) (Desulfatiglans and Desulfurivibrio) and sulfur-oxidizing bacteria (SOB) (Thiobacillus) in biomass was enriched in the case of without addition of NO2- in influent. Sulfate reduction driven ammonium anaerobic oxidation was probably attributed to the coordinated metabolism of nitrogen- and sulfur-utilizing bacteria consortium, in which Anammox bacteria dominates the nitrogen removal, and the SRB and SOB participates in the sulfur cycle as well as accepts required electrons from Anammox bacteria through a direct inter-species electron transfer (DIET) pathway.


Assuntos
Compostos de Amônio , Microbiota , Anaerobiose , Reatores Biológicos , Desnitrificação , Nitrogênio , Esgotos , Sulfatos , Águas Residuárias
18.
Appl Microbiol Biotechnol ; 105(5): 1979-1989, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33544213

RESUMO

River-bay systems are transitional areas that hold important roles in biogeochemical processes between continents and oceans. However, composition and structure of microbial communities shaped by such environments have not been clear yet. In this study, we used high-throughput sequencing of 16S rRNA genes to analyze the diversity and composition of sediment bacterial communities from the Shenzhen river-bay system during dry and wet seasons. The results showed that sediment bacterial community structure was varied according to habitats (river vs. estuary) and seasons (wet season vs. dry season). The alpha diversity of sediment bacterial community was significantly higher in the dry season than in the wet season, while no significant difference of alpha diversity was found between river and estuary. Neutral community model revealed a significant influence of stochastic processes on sediment bacterial community assembly, especially in the wet season. However, the beta nearest-taxon index indicated that deterministic processes were more responsible for the assembly of sediment bacterial community. Additionally, redundancy analysis suggested strong links between sediment bacterial communities and environmental factors in Shenzhen river-bay system, with the environmental factors explaining 63.5% of the bacterial community variation. Specifically, NH4+, pH, and salinity were the three most important contributing factors that shaped the sediment bacterial communities. Overall, this study provides a valuable reference to get insights into the spatiotemporal pattern of sediment bacterial communities in a typical river-bay system. KEY POINTS: • Stochastic processes contribute sediment bacterial community assembly. • Deterministic processes dominate sediment bacterial community assembly. • Environmental factors shape sediment bacterial communities.


Assuntos
Baías , Rios , China , Sedimentos Geológicos , RNA Ribossômico 16S/genética , Estações do Ano
19.
Sci Total Environ ; 742: 140456, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32629251

RESUMO

Complete ammonia-oxidizing (comammox) microorganisms are newly recognized nitrifying bacteria found in natural and engineered ecosystems. Mangrove ecosystems are hotspots for nitrogen cycling, but the knowledge of comammox diversity and abundance, and particularly, driving factors, in these ecosystems is scarce. We here used deep sequencing to investigate comammox diversity in six mangrove ecosystems across southeastern China. Our results showed that comammox microorganisms in mangrove sediments were extremely diverse. Phylogenetic analysis revealed a novel comammox group within clade A that formed a distinct cluster for which no reference sequence existed, implying their potential uniqueness. Quantitative PCR demonstrated that comammox abundance was slightly higher than that of the canonical ammonia-oxidizing bacteria but significantly lower than that of ammonia-oxidizing archaea, indicating they are not the dominant ammonia oxidizers in mangrove ecosystems. Finally, variation partition analysis revealed a significant decrease in similarity of comammox communities along the geographical distance, and a pronounced effect of the geographic factors and sediment attributes on the composition of comammox microorganisms and the abundance variations of ammonia oxidizers. Temperature and salinity were the most important contributing factors that shaped the comammox community. Further, detection of diverse comammox microorganisms in extremely high-salinity sediments suggested that this community could adapt to high salinity environments, which indicates salinity may not be a critical factor resulting in the absence of comammox microorganisms in open-ocean environments. This study expanded the current understanding of the diversity and niche preference of comammox in mangrove ecosystems, and further enhanced our understanding of adaptation potential of comammox communities.


Assuntos
Ecossistema , Salinidade , Amônia , Archaea , China , Nitrificação , Oxirredução , Filogenia , Temperatura
20.
Environ Int ; 129: 208-220, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31129497

RESUMO

Wastewater treatment plants (WWTPs) are a source and reservoir for subsequent spread of various antibiotic resistance genes (ARGs). However, little is known about the activity and hosts of ARGs in WWTPs. Here, we utilized both metagenomic and metatranscriptomic approaches to comprehensively reveal the diversity, abundance, expression and hosts of ARGs in activated sludge (AS) from three conventional WWTPs in Taiwan. Based on deep sequencing data and a custom-made ARG database, a total of 360 ARGs associated with 24 classes of antibiotics were identified from the three AS metagenomes, with an abundance range of 7.06 × 10-1-1.20 × 10-4 copies of ARG/copy of 16S rRNA gene. Differential coverage binning analysis revealed that >22 bacterial phyla were the putative hosts of the identified ARGs. Surprisingly, genus Mycobacterium and family Burkholderiaceae were observed as multi-drug resistant harboring 14 and 50 ARGs. Metatranscriptome analysis showed 65.8% of the identified ARGs were being expressed, highlighting that ARGs were not only present, but also transcriptionally active in AS. Remarkably, 110 identified ARGs were annotated as plasmid-associated and displayed a close to two-fold increased likelihood of being transcriptionally expressed compared to those ARGs found exclusively within bacterial chromosomes. Further analysis showed the transcript abundance of aminoglycoside, sulfonamide, and tetracycline resistance genes was mainly contributed by plasmid-borne ARGs. Our approach allowed us to specifically link ARGs to their transcripts and genetic context, providing a comprehensive insight into the prevalence, expression and hosts of ARGs in AS. Overall, results of this study enhance our understanding of the distribution and dissemination of ARGs in WWTPs, which benefits environmental risk assessment and management of ARB and ARGs.


Assuntos
Resistência Microbiana a Medicamentos , Metagenômica , Esgotos/microbiologia , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , RNA Ribossômico 16S/genética , Taiwan , Águas Residuárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA