Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int Immunopharmacol ; 131: 111820, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508092

RESUMO

Exogenous hydrogen peroxide (H2O2) may generate excessive oxidative stress, inducing renal cell apoptosis related with kidney dysfunction. Geniposide (GP) belongs to the iridoid compound with anti-inflammatory, antioxidant and anti-apoptotic effects. This study aimed to observe the intervention effect of GP on H2O2-induced apoptosis in human kidney-2 (HK-2) cells and to explore its potential mechanism in relation to N6-methyladenosine (m6A) RNA methylation. Cell viability, apotosis rate and cell cycle were tested separately after different treatments. The mRNA and protein levels of m6A related enzymes and phosphoinositide 3-kinase (PI3K)/a serine/threonine-specific protein kinase 3 (AKT3)/forkhead boxo 1 (FOXO1) and superoxide dismutase 2 (SOD2) were detected by reverse transcription-quantitative real-time PCR (RT-qPCR) and Western blot. The whole m6A methyltransferase activity and the m6A content were measured by ELISA-like colorimetric methods. The changes of m6A methylation levels of PI3K/AKT3/FOXO1 and SOD2 were determined by methylated RNA immunoprecipitation (MeRIP)-qPCR. Multiple comparisons were performed by ANOVA with Turkey's post hoc test. Exposed to 400 µmol/L H2O2, cells were arrested in G1 phase and the apoptosis rate increased, which were significantly alleviated by GP. Compared with the H2O2 apoptosis group, both the whole m6A RNA methyltransferase activity and the m6A contents were increased due to GP intervention. Besides, the SOD2 protein was increased, while PI3K and FOXO1 decreased. The m6A methylation level of AKT3 was negatively correlated with its protein level. Taken together, GP affects the global m6A methylation microenvironment and regulates the expression of PI3K/AKT3/FOXO1 signaling pathway via m6A modification, alleviating cell cycle arrest and apoptosis caused by oxidative stress in HK-2 cells with a good application prospect.


Assuntos
Adenina , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Humanos , Peróxido de Hidrogênio , Rim , Iridoides/farmacologia , Apoptose , Estresse Oxidativo , RNA , Metiltransferases , Proteína Forkhead Box O1 , Proteínas Proto-Oncogênicas c-akt
2.
Food Chem Toxicol ; 182: 114158, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37940031

RESUMO

Geniposide (GP) is the homology of medicine and food with bioactive effects of antioxidation and resistance to apoptosis in the liver. It's of great significance to explore the biosafety exposure limits and action mechanisms of GP. This study detected the global DNA methylation microenvironment and the regulation of specific genes in GP against cellular apoptosis induced by hydrogen peroxide (H2O2) of human hepatocyte L-02 cells. The half inhibitory concentration (IC50) of GP on normal L-02 cells was 57.7 mg/mL. GP exerted new epigenetic activity, increased DNMT1, decreased TET1 and TET2 expression, and reversed the demethylation effect to some extent, thereby increasing the overall genomic DNA methylation level at the concentration of 900 µg/mL. GP pretreatment could also adjust the level of P53, Bcl-2 and AKT altered by H2O2, reducing their specific DNA methylation levels in the promoter regions of AKT and Bcl-2 to inhibit apoptosis. Taken together, GP regulates the global DNA methylation level and controls the expression changes of P53, Bcl-2 and AKT, jointly inhibiting the occurrence of apoptosis in human hepatocytes and providing the newly theoretical references for its safety evaluation.


Assuntos
Metilação de DNA , Peróxido de Hidrogênio , Humanos , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Hepatócitos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/farmacologia , Proteínas Proto-Oncogênicas/genética
3.
Calcif Tissue Int ; 113(4): 393-402, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37656219

RESUMO

PURPOSE: Bone health and body composition share several common mechanisms like oxidative stress and inflammation. Anthocyanins have antioxidant and anti-inflammatory properties. We have reported that anthocyanins are associated with better body composition in children, but the associations with bone health have not been elucidated. We aimed to explore the association of anthocyanins with bone mineral content (BMC) and bone mineral density (BMD) at multiple sites in children. METHODS: In this cross-sectional study, 452 Chinese children aged 6-9 years were recruited. A validated 79-item food frequency questionnaire was used to collect dietary information. BMC and BMD at multiple sites (whole body; whole body excluding head, WBEH; limbs; arms; legs) were measured by dual-energy X-ray. RESULTS: Higher dietary intake of total anthocyanidins (per one standard deviation increase) was associated with a 1.28-13.6 g (1.31-1.60%, compared to median) higher BMC at all sites and a 3.61-6.96 mg (0.65-0.90%) higher BMD at the whole body, WBEH, and arm sites after controlling for a number of possible covariates. The results were similar and more pronounced for cyanidin, but not for delphinidin and peonidin. Higher dietary intake of cyanidin (per one standard deviation increase) was associated with a 1.33-15.4 g (1.48-1.68%) higher BMC at all sites and a 4.15-7.77 mg (0.66-1.00%) higher BMD at all sites except the legs. No statistically significant associations with BMC or BMD were found for dietary intake of delphinidin and peonidin. CONCLUSIONS: Higher dietary intake of total anthocyanidins and cyanidins were associated with higher BMC and BMD in Chinese children.


Assuntos
Antocianinas , Densidade Óssea , Humanos , Criança , Estudos Transversais , Antioxidantes , Ingestão de Alimentos
4.
Food Chem Toxicol ; 180: 114005, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37640280

RESUMO

Cadmium (Cd) causes bone loss, concerning inhibiting osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Prunella vulgaris L. (PV) has the potential for promoting osteogenic differentiation, but its influence on Cd-induced bone loss is unclear. This study investigated the effect of PV aqueous extract (PVE) on Cd-induced bone loss and its underlying mechanisms. Eight-week-old female SD rats were randomly assigned into four groups and treated for 16 weeks: Control, Cd (50 mg/L of Cd chloride), Cd + PV Low (125 mg/kg bw of PVE), and Cd + PV High (250 mg/kg bw of PVE). PV ameliorated femoral bone loss in Cd-treated rats manifested as increases in bone mineral density, bone volume, trabecular thickness, number, and area, and decreases in trabecular separation. Compared with Cd group, PV-treatment groups had higher serum levels of bone formation markers (ALP, BGP). Additionally, in PV-treatment groups, expressions of bone formation markers (Osterix, Runx2) and molecules involved in osteogenic differentiation signal pathway BMP/Smad (BMP4, Smad1/5/9) in the tibia of rats and isolated rat primary BMSCs were upregulated. These results suggest that PV alleviates Cd-induced bone loss by promoting osteogenic differentiation, which is likely associated with BMP/Smad pathway.

5.
Free Radic Biol Med ; 208: 309-318, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611644

RESUMO

Phenolic compounds are promising agents for the prevention of osteoporosis. 5-(3',4'-dihydroxyphenyl)-γ-valerolactone (DHPV) is the major microbiota metabolite of the flavan-3-ols phenolic compound. Herein, we aimed to investigate the potential mechanisms underlying the effects of DHPV on an osteoblast cell model with H2O2-induced oxidative injury. The MC3T3-E1 cell cultured with H2O2 was used as an oxidative injury model after pretreating with DHPV. Pretreatment with DHPV significantly attenuated cell viability decline, enhanced the activity of alkaline phosphatase and mineralization capacity in MC3T3-E1 cells. Reduced reactive oxygen species (ROS) and malondialdehyde (MDA) levels as well as increased in mitochondrial membrane potential and superoxide dismutase (SOD) activities indicated that DHPV affected both the oxidative and antioxidative processes in the cells. DHPV administration increased the LC3-II/I ratio and Beclin-1 protein levels, thereby promoting autophagy, which perhaps contributes to ROS elimination. However, the inhibition of Sirtuin 1 (SIRT1) by SIRT1 small interfering RNA reduced the protective effect of DHPV or SRT1720, as revealed by the increased ROS and MDA levels and decreased SOD, LC3-II/I ratio and Beclin-1 levels. DHPV may promote autophagy and reduce oxidative stress through the SIRT1-mediated pathway, thereby protecting MC3T3-E1 cells from H2O2-induced oxidative damage.


Assuntos
Flavonoides , Peróxido de Hidrogênio , Sirtuína 1 , Autofagia , Diferenciação Celular , Linhagem Celular , Flavonoides/metabolismo , Flavonoides/farmacologia , Peróxido de Hidrogênio/metabolismo , Microbiota/fisiologia , Osteoblastos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Superóxido Dismutase/metabolismo , Animais , Camundongos
6.
Food Chem Toxicol ; 172: 113601, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610472

RESUMO

Cadmium accumulates in the kidney and causes inflammation. The NLRP3 inflammasome has been linked to the pathogenesis of inflammation. Hyperoside (HYP) possesses potent nephroprotective properties against of kidney injury. This study aimed to research the effects and related mechanism of HYP on Cd-induced kidney damage. Wide-type and NLRP3-/- mice were used to determine the role of NLRP3 inflammasome in Cd-induced renal dysfunction. Female C57BL/6 were treated with Cd (50 m,g/L) and HYP (25, 50 mg/kg) for 12 weeks. In vitro experiments, the human renal proximal-tubule epithelial cells (RPTEC/TERT1) were pretreated with HYP (50-200 µM) before exposure to Cd. NLRP3 deficiency attenuated Cd-induced NLRP3 activation, inflammation and kidney injury in mice. HYP treatment significantly alleviated Cd-induced kidney injury by decreasing indexes of kidney function, reducing pro-inflammatory cytokines release, decreasing ROS production and suppressing NLRP3 inflammasome activation. Moreover, treatment with siRNA targeting NLRP3 blocked the anti-inflammatory protective effect of HYP in Cd-treated cells. Additionally, HYP markedly inhibited Cd-induced MAPK/NF-κB pathway stimulation in vitro and in vivo. The findings indicated HYP conferred protection against Cd-induced kidney inflammation via suppression of NLRP3 inflammasome mediated by ROS/MAPK/NF-κB signaling. Our results thus support the notion of developing HYP as promising therapeutic candidate for Cd-induced kidney injury.


Assuntos
Inflamassomos , NF-kappa B , Humanos , Feminino , Camundongos , Animais , NF-kappa B/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Rim , Inflamação/metabolismo
7.
Int J Obes (Lond) ; 47(1): 67-74, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36396857

RESUMO

OBJECTIVES: The aim of this study was to investigate the relationship between body composition and leukocyte telomere length (LTL) in healthy Chinese children aged 6-11 years. METHODS: This cross-sectional study enrolled 406 healthy children (175 girls and 231 boys). The relative telomere length in their peripheral blood leukocytes was determined via quantitative polymerase chain reaction. Dual-energy X-ray absorptiometry was used to determine body fat content and regional fat distribution, appendicular skeletal muscle mass (ASM), bone mineral density (BMD) and bone mineral content (BMC) at the total body (TB) and total body less head (TBLH) levels, and total body lean mass (TBLM) was then determined. ASM/height2 (ASMI) was also calculated. RESULTS: After adjusting for potential covariates, multiple linear regression analyses revealed that neither body fat content nor regional body fat distribution were significantly associated with LTL (ß = -8.48 × 10-6-1.44 × 10-1, p = 0.227-0.959). However, ASM, ASMI, TB BMC/TB BMD, TBLH BMC/TBLH BMD and TBLM were positively associated with LTL (ß = 8.95 × 10-6-4.95 × 10-1, p = 0.005-0.035). Moreover, analysis of covariance revealed there was a statistically significant dose-dependent positive association between LTL and ASM, TB BMC/BMD, TBLH BMC/BMD, and TBLM (p-trend = 0.002-0.025). CONCLUSIONS: Skeletal muscle mass and bone mass but not body fat content or distribution were significantly associated with LTL in this pediatric population.


Assuntos
Composição Corporal , Densidade Óssea , Masculino , Feminino , Humanos , Criança , Estudos Transversais , Composição Corporal/fisiologia , Densidade Óssea/fisiologia , Absorciometria de Fóton , Telômero
8.
Toxicol Sci ; 191(2): 201-211, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36453845

RESUMO

Cadmium (Cd) is a well-characterized bone toxic agent and can induce bone damage via inhibiting osteogenic differentiation. Bone morphogenetic protein (BMP)/SMAD signaling pathway can mediate osteogenic differentiation, but the association between Cd and BMP/SMAD signaling pathway is yet to be illuminated. To understand what elements of BMPs and SMADs are affected by Cd to influence osteogenic differentiation and if BMPs can be the biomarkers of which Cd-induced osteoporosis, human bone marrow mesenchymal stem cells (hBMSCs) were treated with cadmium chloride (CdCl2) in vitro to detect the expression of BMPs and SMADs, and 134 subjects were enrolled to explore if the BMPs can be potential biomarkers of Cd-associated bone damage. Our results showed that Cd exposure significantly promoted the adipogenic differentiation of hBMSCs and inhibited its osteogenic differentiation by inhibiting the expression of BMP-2/4, SMAD4, and p-SMAD1/5/9 complex. And mediation analyses yielded that BMP-4 mediated 39.32% (95% confidence interval 7.47, 85.00) of the total association between the Cd and the risk of Cd-associated bone damage. Moreover, during differentiation, BMP-4 had the potential to enhance mineralization compared with CdCl2 only group. These results reveal that BMP-4 can be a diagnostic biomarker and therapeutic target for Cd-associated bone damage.


Assuntos
Cádmio , Osteogênese , Humanos , Proteína Morfogenética Óssea 4 , Cádmio/toxicidade , Cloreto de Cádmio/toxicidade , Diferenciação Celular , Biomarcadores
9.
Nutrients ; 14(18)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36145128

RESUMO

Early bone accrual significantly influences adult bone health and osteoporosis incidence. We aimed to investigate the relationship between dietary patterns (DPs), bone mineral content (BMC) and bone mineral density (BMD) in school-age children in China. Children aged six-nine years (n = 465) were enrolled in this cross-sectional study. DPs were identified by principal component factor analysis. Total body (TB) and total body less head (TBLH) BMC and BMD were measured using dual-energy X-ray absorptiometry. Five DPs were identified. After adjustment for covariates, multiple linear regression analysis showed that the "fruit-milk-eggs" dietary pattern was positively associated with TB (ß = 10.480; 95% CI: 2.190, 18.770) and TBLH (ß = 5.577; 95% CI: 0.214, 10.941) BMC, the "animal organs-refined cereals" pattern was associated with low TB BMC (ß = -10.305; 95% CI: -18.433, -2.176), TBLH BMC (ß = -6.346; 95% CI: -11.596, -1.096), TB BMD (ß = -0.006; 95% CI: -0.011, -0.001) and TBLH BMD (ß = -0.004; 95% CI: -0.007, -0.001). In conclusion, our study recommends home or school meals should be rich in fruit, milk, eggs with a moderate amount of vegetables, coarse grains and meat to promote bone development for school-age children.


Assuntos
Densidade Óssea , Dieta , Absorciometria de Fóton , Animais , Estudos Transversais , Humanos , Verduras
10.
Toxicol Lett ; 367: 9-18, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35843418

RESUMO

Cadmium (Cd)-induced bone damage may be mediated through activating osteoclastogenesis. However, the underlying mechanism is unknown. The purpose of this study was to explore the effect and possible mechanism of CdCl2-induced osteoclastogenesis in RAW264.7 cells. We found that a low concentration of CdCl2 (0.025 and 0.050 µM) did not affect the viability of RAW264.7 cells, but promoted osteoclastogenesis. A low concentration of CdCl2 increased the mRNA and protein expression of osteoclastogenesis-related genes. TRAP staining and transmission electron microscopy (TEM) also demonstrated that CdCl2 promoted osteoclastogenesis. A low concentration of CdCl2 upregulated the levels of LC3-II and Beclin-1, and decreased p62 expression. TEM showed relatively abundant autophagic vacuoles (autophagosomes) after CdCl2 exposure. A low concentration of CdCl2 downregulated the expression levels of Mtor and p70S6K1, and the relative protein expression ratios of p-mTOR/mTOR and p-p70S6K1/p70S6K1. When cells were treated with the autophagy inhibitor chloroquine (CQ) or mTOR activator MHY1485 combined with CdCl2, the expressions of osteoclastogenesis related-genes were decreased and autophagy was attenuated compared with cells treated with CdCl2 alone. Deficiencies in autophagosomes and osteoclasts were also observed. Taken together, the results indicate that a low concentration of CdCl2 promotes osteoclastogenesis by enhancing autophagy via inhibiting the mTOR/p70S6K1 signaling pathway.


Assuntos
Cádmio , Osteogênese , Autofagia , Cádmio/toxicidade , Proteínas Quinases S6 Ribossômicas 70-kDa , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
11.
J Nutr ; 152(6): 1549-1559, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35278080

RESUMO

BACKGROUND: Telomere length (TL) serves as a marker of cellular senescence and appears to plateau between the age of 4 y and young adulthood, after which the gut microbiota are supposed to be established. However, scarce data are available regarding the correlation between gut microbiota composition and TL in the pediatric population. OBJECTIVES: We aimed to investigate whether the gut microbiota and the concentrations of SCFAs in feces are associated with leukocyte TL in children. METHODS: In total, 401 children aged 6-9 y from Guangzhou were enrolled in this cross-sectional study. qPCR was used to determine relative TL in peripheral blood leukocytes. The gut microbiota was characterized by 16S ribosomal RNA amplicon sequencing and the fecal concentrations of total SCFAs and SCFA subtypes were determined using HPLC. The multivariate methods with an unbiased variable selection (MUVR) algorithm and partial least square models were used to select predictable operational taxonomic units (OTUs). Further correlation analyses were performed based on multiple linear regression models with adjustment for covariates and false discovery rate. RESULTS: With the use of MUVR, 35 relevant and minimal optimal OTUs were finally selected. Multiple linear regression analysis showed that the abundance of several OTUs, including OTU334 (belonging to the genus Family XIII AD3011 group), OTU726 (belonging to the species Lachnoclostridium phocaeense), OTU1441 (belonging to the genus Ruminococcus torques group), OTU2553 (belonging to the genus Lachnospiraceae UCG-010), and OTU3375 (belonging to the family Lachnospiraceae), was negatively associated with leukocyte TL (ß: -0.187 to -0.142; false discovery rate (FDR)-corrected P value (PFDR) = 0.009-0.035]. However, neither SCFA subtype nor total SCFA content in feces exhibited significant associations with TL (ß: -0.032 to 0.048; PFDR = 0.915-0.969). CONCLUSIONS: The gut microbiota, but not fecal SCFA concentration, was significantly associated with TL in this pediatric population.


Assuntos
Microbioma Gastrointestinal , Adulto , Criança , Estudos Transversais , Ácidos Graxos Voláteis/análise , Fezes/química , Microbioma Gastrointestinal/genética , Humanos , Leucócitos/química , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Telômero , Adulto Jovem
12.
Eur J Nutr ; 60(8): 4505-4517, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34129072

RESUMO

PURPOSE: We aimed to investigate whether the gut microbiota and fecal short-chain fatty acids (SCFAs) are associated with bone mass in healthy children aged 6-9 years. METHODS: In this study, 236 healthy children including 145 boys and 91 girls were enrolled. 16S rRNA gene sequencing was used to characterize the composition of their gut microbiota. Total and 10 subtypes of SCFAs in the fecal samples were determined by high-performance liquid chromatography. Dual X-ray absorptiometry was used to measure the bone mineral density (BMD) and bone mineral content (BMC) for total body (TB) and total body less head (TBLH). Z score of TBLH BMD was calculated based on the recommended reference. RESULTS: Four gut microbiota principal components (PCs) were identified by the compositional principal component analysis at the genus level. After adjustment of covariates and controlling for the false discovery rate, multiple linear regression analysis showed that PC3 score (positive loadings on genera Lachnoclostridium and Blautia) was significantly negatively associated with TBLH BMD/BMC/Z score, TB BMC and pelvic BMD (ß: - 0.207 to - 0.108, p: 0.002-0.048), whereas fecal total and several subtypes of SCFAs were correlated positively with TBLH BMD/Z score and pelvic BMD (ß: 0.118-0.174, p: 0.038-0.048). However, these associations disappeared after additional adjustment for body weight. Mediation analysis suggested that body weight significantly mediated 60.4% and 78.0% of the estimated association of PC3 score and SCFAs with TBLH BMD Z score, respectively. CONCLUSIONS: The associations of gut microbiota composition and fecal SCFA concentrations with bone mass in children were largely mediated by body weight.


Assuntos
Densidade Óssea , Microbioma Gastrointestinal , Absorciometria de Fóton , Criança , Estudos Transversais , Ácidos Graxos Voláteis , Feminino , Humanos , Masculino , RNA Ribossômico 16S/genética
13.
Ecotoxicol Environ Saf ; 211: 111897, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33493719

RESUMO

Chronic cadmium (Cd) toxicity is a significant health concern, and the mechanism of long-term low-dose Cd exposure on bone has not been fully elucidated yet. This study aimed to assess the association between long-term environmental Cd exposure and bone remodeling in women who aged over 50. A total of 278 non-smoking subjects from Cd-polluted group (n = 191) and non-Cd polluted group (n = 87) were investigated. Bone mineral density (BMD), the levels of three bone turnover markers (BTMs), including total procollagen type 1 amino-terminal propeptide (P1NP), collagen type 1 cross-linked C-telopeptide (ß-CTX), bone-specific alkaline phosphatase (BALP), together with serum soluble receptor activator of nuclear factor-κB ligand (sRANKL) and osteoprotegerin (OPG) were determined. Early markers of renal dysfunction were measured as well. Urinary Cd concentrations ranged from 0.41 to 87.31 µg/g creatinine, with a median of 4.91 µg/g creatinine. Age, BMD, T-score, and prevalence of osteoporosis showed no statistical differences among the quartiles of urinary Cd concentrations, while serum levels of P1NP, ß-CTX, and OPG were higher in the upper quartiles. Multivariate linear regression models indicated significantly positive associations of urinary Cd concentration with serum levels of P1NP, ß-CTX, BALP, sRANKL, and OPG. A ridge regression analysis with T-score and the three BTMs, sRANKL, and OPG, adjusted for age and body mass index (BMI), indicated that except for age and Cd exposure, ß-CTX was a predictor of T-score. These findings demonstrated that Cd may directly accelerate bone remodeling. Serum ß-CTX might be an appropriate biochemical marker for evaluating and monitoring Cd-related bone loss. Capsule: Cadmium (Cd) may directly accelerate bone remodeling and serum ß-CTX is a valuable biochemical marker for evaluating Cd-related bone loss.


Assuntos
Remodelação Óssea , Cádmio/sangue , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/sangue , Adulto , Idoso , Fosfatase Alcalina , Biomarcadores/sangue , Índice de Massa Corporal , Densidade Óssea , Osso e Ossos , Colágeno Tipo I , Feminino , Humanos , Pessoa de Meia-Idade , Osteoporose/sangue , Osteoprotegerina , Peptídeos , Ligante RANK/sangue
14.
Phytother Res ; 35(5): 2691-2702, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33440461

RESUMO

The continued global rise in papillary thyroid carcinoma (PTC) combined with potential adverse effects of regular treatments calls for an alternative therapy. Prunella vulgaris L. (PV) is commonly used as a herbal remedy for thyroid diseases in China, but its influence on PTC is unclear. This study investigated the effect of PV aqueous extract on PTC and its underlying mechanism using a mouse xenograft model and the human PTC cell line K1. PV suppressed tumor growth in PTC-bearing mice at 0.05 and 0.1 g/kg bw, accompanied by improvements in autophagy-related protein expressions in xenografts. In K1 cells, PV inhibited cell growth and induced autophagic flux, manifesting as changes in autophagy-related proteins, the presence of autophagosomes, and a further increase in LC3-II by co-incubation with bafilomycin A1. Autophagy inhibitor 3-methyladenine ameliorated the autophagic cell death caused by PV. The mammalian target of rapamycin (mTOR) activator MHY1485 blocked the antiproliferative activity of PV by regulating mTOR, unc-51-like autophagy activating kinase 1 (ULK1), autophagosomes formation, and autophagy-related proteins. The adenosine monophosphate-activated protein kinase (AMPK) inhibitor compound C attenuated PV-induced inhibition of mTOR. Our results suggest that PV inhibits the growth of PTC in vivo and in vitro via autophagy, which is associated with the AMPK/mTOR/ULK1 pathway. Thus, PV has the potential to function as a therapeutic agent against PTC.

15.
Toxicol Lett ; 331: 159-166, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32522577

RESUMO

Cadmium, which is extensively distributed in the environment, accumulates in organisms through the trophic chain. Although cadmium can cause bone injury, its role in osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs) remains unclear. The present study investigated the effect of cadmium chloride (CdCl2) on osteogenesis of hBMSCs and the underlying mechanism. CdCl2 dose-dependently reduced the viability of hBMSCs. Concentrations of CdCl2 (2.5 and 5.0 µM) increased miR-143-3p levels; decreased levels of adenosine diphosphate-ribosylation factor-like protein 6 (ARL6); inhibited Wnt family member 3A (Wnt3a), ß-catenin, lymphoid enhancer factor (LEF1), and T-cell factor 1 (TCF1); and suppressed osteogenesis of hBMSCs. Inhibition of miR-143-3p or overexpression of ARL6 with lentivirus blocked these CdCl2-induced changes. Luciferase reporter assays confirmed that miR-143-3p binds to the 3'-UTR regions of ARL6 mRNA. Reduced-expression of miR-143-3p enhanced the CdCl2-induced suppression of the osteogenesis of hBMSCs and inhibition of the Wnt/ß-catenin pathway, effects that were reversed by down-regulated expression of ARL6. Thus, miR-143-3p targets ARL6 to down-regulate the Wnt/ß-catenin pathway, which is involved in the suppression of osteogenic differentiation of hBMSCs. The results provide new directions for clinical treatment of bone diseases resulting from cadmium toxicity.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Cádmio/toxicidade , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/efeitos dos fármacos , MicroRNAs/genética , Osteogênese/efeitos dos fármacos , Regiões 3' não Traduzidas , Fatores de Ribosilação do ADP/genética , Técnicas de Cultura de Células , Diferenciação Celular/genética , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Via de Sinalização Wnt/efeitos dos fármacos
16.
Environ Pollut ; 249: 620-628, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30933759

RESUMO

Chronic cadmium (Cd) toxicity is a significant health concern, and the mechanism of long-term low-dose Cd exposure on bone has not been fully elucidated till date. This study aimed to assess the association between rat mesenchymal stem cells (MSCs) and long-term Cd exposure through 38-week intake of CdCl2 at 1 and 2 mg/kg body weight (bw). Increased gene expression of receptor activator of NF-κB ligand (RANKL) and decreased gene expression of osteoprotegerin (OPG) were observed. Fold change of RANKL gene expression (fold change = 1.97) and OPG gene expression (fold change = 1.72) showed statistically significant differences at dose 2 mg/kg bw. Decreased expression of key genes was observed during the early osteogenic differentiation of MSCs. The gene expression of Osterix in 1 mg/kg bw group was decreased by 3.70-fold, and the gene expressions of Osterix, Osteopontin, collagen type I alpha 2 chain (COL1a2) and runt-related transcription factor 2 (RUNX2) in 2 mg/kg bw group were decreased by 1.79, 1.67, 1.45 and 1.35-folds, respectively. Exposure to CdCl2 induced an increase in the renal Cd load, but only an adaptive response was observed, including increased expression of autophagy-related proteins LC3B and Beclin-1, autophagy receptor p62, and heme oxygenase 1 (HO-1), which is an inducible isoform that releases in response to stress. There were no significant changes in the urinary low molecular weight proteins including N-acetyl-b-D-glucosaminidase (NAG), ß2-microglobulin and albumin (U-Alb). Urinary calcium (Ca) excretion showed no increase, and no obvious renal histological changes. Taken together, these results indicated that the chronic CdCl2 exposure directly act on MSCs through RANKL/OPG pathway and downregulate the key genes involved in osteogenic differentiation of MSCs. The toxic effect of Cd on bone may occur in parallel to nephrotoxicity.


Assuntos
Cloreto de Cádmio/toxicidade , Cádmio/toxicidade , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/genética , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Animais , Osso e Ossos/metabolismo , Proteínas de Transporte/metabolismo , Diferenciação Celular , Colágeno Tipo I/biossíntese , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Regulação para Baixo , Feminino , Expressão Gênica , Humanos , Osteogênese/efeitos dos fármacos , Osteopontina/biossíntese , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/biossíntese
17.
Int J Mol Sci ; 20(6)2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917596

RESUMO

Cadmium is a common environmental pollutant that causes bone damage. However, the effects of cadmium on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs) and its mechanism of action in this process are unclear. Here, we determined the effects of cadmium chloride (CdCl2) on the osteogenic differentiation of BMMSCs and the potential mechanism involved in this process. As determined in the present investigation, CdCl2, in a concentration-dependent manner, affected the viability of BMMSCs and their cytoskeletons. Exposure to 0.1 or 0.2 µM CdCl2 inhibited osteogenic differentiation of BMMSCs, which was reflected in the down-regulation of osteoblast-related genes (ALP, OCN, Runx2, OSX, and OPN); in suppression of the protein expression of alkaline phosphatase (ALP) and runt-related transcription factor 2 (Runx2); and in decreased ALP activity and capacity for mineralization. Moreover, mRNA microarray was performed to determine the roles of these factors in BMMSCs treated with CdCl2 in comparison to control BMMSCs. As determined with the microarrays, the Wingless-type (Wnt), mothers against decapentaplegic and the C. elegans gene Sam (SMAD), and Janus kinase-Signal Transducers and Activators of Transcription (JAK-STAT) signaling pathways were involved in the effects caused by CdCl2. Moreover, during differentiation, the protein levels of Wnt3a, ß-catenin, lymphoid enhancer factor 1 (LEF1), and T-cell factor 1 (TCF1) were reduced by CdCl2. The current research shows that CdCl2 suppresses the osteogenesis of BMMSCs via inhibiting the Wnt/ß-catenin pathway. The results establish a previously unknown mechanism for bone injury induced by CdCl2.


Assuntos
Células da Medula Óssea/metabolismo , Cloreto de Cádmio/farmacologia , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Via de Sinalização Wnt , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteocalcina/genética , Osteocalcina/metabolismo , Osteopontina/genética , Osteopontina/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Sci Total Environ ; 616-617: 1469-1476, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29066194

RESUMO

The toxicity and persistence of perfluoroalkyl acids (PFAAs) in humans have drawn growing concerns, particularly for children. However, data regarding the concentrations of PFAAs in children are limited. In this study, we measured the concentrations of 14 PFAAs in plasma samples collected from 1192 children aged 0-7years from 7 cities in Guangdong Province: Guangzhou, Shenzhen, Foshan, Dongguan, Zhaoqing, Zhongshan and Zhanjiang. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were detected in >99.5% of the analysed samples. PFOS had the highest median concentration (23.6ng/mL) in the total samples, followed by PFOA (2.8ng/mL). The median concentrations of the other PFAAs were lower than 0.4ng/mL. The concentrations of perfluorohexanoic acid, perfluorononanoic acid, perfluorodecanoic acid, perfluorododecanoic acid, perfluorohexane sulfonate, PFOA and PFOS in children from Foshan were significantly higher than those found in other cities (p<0.001). Negative correlations between most of the PFAA concentrations and age (r=-0.06--0.45) were found in all children. Weak to moderate correlations (r=0.080-0.698) were observed between all PFAA concentrations. Our findings indicated a high exposure of children to PFAAs in the early life-stage. The exposure sources and pathways of PFAAs in different regions are different. Considering a lack of information on the exposure pathways and health status, more studies are needed to evaluate the exposure resources and assess the health risk of PFAA exposure in children.

19.
Environ Sci Pollut Res Int ; 24(29): 23299-23308, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28836141

RESUMO

To evaluate the exposure of children to 14 perfluorinated compounds (PFCs) in a typical and representative industrial city, plasma samples from 476 children aged 0-7 years in Foshan, China, were analysed. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were detected in 100% of the samples, accounting for 82.27 and 11.46% of the total PFC concentrations, respectively, while PFOS peaked at age 0-1 years, for which the mean and median concentrations were 113.71 and 83.65 ng/mL, respectively, while PFOA peaked at age 3-4 years, for which the mean and median concentrations were 10.68 and 6.58 ng/mL, respectively. The concentrations of PFOS, perfluorohexane sulfonate and perfluorohexanoic acid decreased with age among children aged 0-7 years, and no gender-related differences were found in the concentrations of PFCs. A high correlation was found among all PFCs, especially between PFCs of similar carbon chains (r = 0.161-0.695, p < 0.05). In addition, the concentrations of PFOS and PFOA in children's plasma in Foshan were up to 40-fold higher than those reported in China and other countries. In conclusion, children in Foshan have extensive exposure to PFCs, especially in infancy. Further studies are needed to explore the impact of PFCs on children who live in a typical and representative industrial city in China. Graphical abstract ᅟ.


Assuntos
Ácidos Alcanossulfônicos/sangue , Caproatos/sangue , Caprilatos/sangue , Exposição Ambiental/análise , Poluentes Ambientais/sangue , Fluorocarbonos/sangue , Ácidos Sulfônicos/sangue , Adolescente , Fatores Etários , Criança , China , Feminino , Humanos , Masculino , Fatores Sexuais
20.
Artigo em Inglês | MEDLINE | ID: mdl-27669281

RESUMO

Methyl tertiary butyl ether (MTBE)-A well known gasoline additive substituting for lead alkyls-causes lipid disorders and liver dysfunctions in animal models. However, whether MTBE exposure is a risk factor for non-alcoholic fatty liver disease (NAFLD) remains uncertain. We evaluate the possible relationship between MTBE exposure and the prevalence of NAFLD among 71 petrol station attendants in southern China. The personal exposure concentrations of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS. NAFLD was diagnosed by using abdominal ultrasonography according to the guidelines for the diagnosis and treatment of NAFLD suggested by the Chinese Hepatology Association. Demographic and clinical characteristics potentially associated with NAFLD were investigated. Mutivariate logistic regression analysis was applied to measure odds ratios and 95% confidence intervals (CI). The result showed that the total prevalence of NAFLD was 15.49% (11/71) among the study subjects. The average exposure concentrations of MTBE were 292.98 ± 154.90 µg/m³ and 286.64 ± 122.28 µg/m³ in NAFLD and non-NAFLD groups, respectively, and there was no statistically significant difference between them (p > 0.05). After adjusting for age, gender, physical exercise, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), alanine aminotransferase (ALT), white blood cell (WBC), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), the odds ratios were 1.31 (95% CI: 0.85-1.54; p > 0.05), 1.14 (95% CI: 0.81-1.32; p > 0.05), 1.52 (95% CI: 0.93-1.61; p > 0.05) in the groups (including men and women) with exposure concentrations of MTBE of 100-200 µg/m³, 200-300 µg/m³, and ≥300 µg/m³, respectively, as compared to the group (including men and women) ≤100 µg/m³. Our investigation indicates that exposure to MTBE does not seem to be a significant risk factor for the prevalence of NAFLD among petrol station attendants in southern China.


Assuntos
Poluentes Atmosféricos/intoxicação , Éteres Metílicos/intoxicação , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Adulto , Alanina Transaminase/sangue , Povo Asiático , Pressão Sanguínea , China/epidemiologia , Colesterol/sangue , Estudos Transversais , Fígado Gorduroso/complicações , Feminino , Humanos , Lipoproteínas HDL , Lipoproteínas LDL , Masculino , Pessoa de Meia-Idade , Razão de Chances , Prevalência , Fatores de Risco , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA