Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 634(8036): 1080-1085, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39478211

RESUMO

Softening of the transverse optical (TO) phonon, which could trigger ferroelectric phase transition, can usually be achieved by enhancing the long-range Coulomb interaction over the short-range bonding force1, for example, by increasing the Born effective charges2. However, it suffers from depolarization effects3,4 as the induced ferroelectricity is suppressed on size reduction of the host materials towards high-density nanoscale electronics. Here, we present an alternative route to drive the TO phonon softening by showing that the abnormal soft TO phonon in rocksalt-structured ultrawide-bandgap BeO (ref. 5) is mainly induced by a substantial reduction in the short-range bonding interaction due to the Be-O bond stretching caused by an electron cloud-overlap-induced Coulomb repulsion between two adjacent oxygen ions that are arranged octahedrally around an extremely small Be ion. We further demonstrate the emergence of robust ferroelectricity in strain-induced perovskite BaZrO3 and ultrathin HfO2 and ZrO2 films6,7 grown epitaxially on lattice-mismatched SiO2/Si substrate arising from the softening of the TO phonon driven by a reduction in the short-range bonding strength of biaxial strain-induced stretching bonds. These findings shed light on developing a unified theory for ferroelectricity enhancement in ultrathin films free from depolarization fields by tailoring chemical bonds using ionic radius differences, strains, doping and lattice distortions.

2.
Nat Commun ; 15(1): 8322, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333513

RESUMO

Ferroelectricity has been predicted in two-dimensional Group-Va elemental materials and confirmed in high-quality Bi monolayers by a recent experiment. The origin of such elemental ferroelectricity is related to the spontaneous lattice distortion with atomic layer buckling. A surprising observation in experiment is the abundance of charged 180° head-to-head/tail-to-tail domain walls, distinct from conventional ferroelectrics, where the naturally occurring ferroelectric domain walls are mostly charge neutral. Here, we clarify the origin of this phenomenon. We find that distinct from conventional ferroelectrics, in such single-element ferroelectric monolayers, it is the strain energy rather than the electrostatic energy that dominates the energetics. This leads to intrinsically stable 180° charged domain walls. The orbital interaction and the lone-pair activation mechanism play a key role in this picture. We further predict and confirm experimentally that the most stable domain wall type changes from charged to neutral ones under small applied strain. Our work reveals a mechanism to generate polarization and stabilize intrinsic charged domain walls, which will shed light on potential applications of ferroelectronics based on charged domain walls.

3.
J Phys Chem Lett ; 15(27): 7055-7060, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38949914

RESUMO

The low thermal conductivity of group IV-VI semiconductors is often attributed to the soft phonons and giant anharmonicity observed in these materials. However, there is still no broad consensus on the fundamental origin of this giant anharmonic effect. Utilizing first-principles calculations and group symmetry analysis, we find that the cation lone-pairs s electrons in IV-VI materials cause a significant coupling between occupied cation s orbitals and unoccupied cation p orbitals due to the symmetry reduction when atoms vibrate away from their equilibrium positions under heating. This leads to an electronic energy gain, consequently flattening the potential energy surface and causing soft phonons and strong anharmonic effects. Our findings provide an intrinsic understanding of the low thermal conductivity in IV-VI compounds by connecting the anharmonicity with the dynamical electronic structures, and can also be extended to a large family of hybrid systems with lone-pair electrons, for promising thermoelectric applications and predictive designs.

4.
J Am Chem Soc ; 146(23): 16222-16228, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38778012

RESUMO

The crystal structure of a material is essentially determined by the nature of its chemical bonding. Consequently, the atomic coordination intimately correlates with the degree of ionicity or covalency of the material. Based on this principle, materials with similar chemical compositions can be successfully categorized into different coordination groups. However, counterexamples have recently emerged in complex ternary compounds. For instance, covalent IB-IIIA-VIA2 compounds, such as AgInS2, prefer a tetrahedrally coordinated structure (TCS), while ionic IA-VA-VIA2 compounds, such as NaBiS2, would favor an octahedrally coordinated structure (OCS). One naturally expects that IB-VA-VIA2 compounds with intermediate ionicity or covalency, such as AgBiS2, should then have a mix-coordinated structure (MCS) consisting of covalent AgS4 tetrahedra and ionic BiS6 octahedra. Surprisingly, only the experimental presence of the OCS was observed for AgBiS2. To resolve this puzzle, we perform first-principles studies of the phase stabilities of ternary compounds at finite temperatures. We find that AgBiS2 indeed prefers MCS at the ground state, in agreement with the typical expectation, but under experimental synthesis conditions, disordered OCS becomes energetically more favorable because of its low mixing energy and high configurational entropy. Our work elucidates the critical role of configurational disorder in stabilizing chemically unfavorable coordination, providing a rigorous rationale for the anomalous coordination preference in IB-VA-VIA2 compounds.

5.
J Am Chem Soc ; 146(18): 12864-12876, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38670931

RESUMO

Deep-ultraviolet (DUV) light sources are technologically highly important, but DUV light-emitting materials are extremely rare; AlN and its alloys are the only materials known so far, significantly limiting the chemical and structural spaces for materials design. Here, we perform a high-throughput computational search for DUV light emitters based on a set of carefully designed screening criteria relating to the sophisticated electronic structure. In this way, we successfully identify 5 promising material candidates that exhibit comparable or higher radiative recombination coefficients than AlN, including BeGeN2, Mg3NF3, KCaBr3, KHS, and RbHS. Further, we unveil the unique features in the atomic and electronic structures of DUV light emitters and elucidate the fundamental genetic reasons why DUV light emitters are extremely rare. Our study not only guides the design and synthesis of efficient DUV light emitters but also establishes the genetic nature of ultrawide-band-gap semiconductors in general.

6.
J Phys Chem Lett ; 15(6): 1652-1657, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38315160

RESUMO

The perovskite CsPbBr3 exhibits an unusual nonmonotonic dependence of the band gap on increasing pressure to about 2.0 GPa as compared to conventional semiconductors. Using the first-principles calculation method, we show that under pressure, isotropic volume deformation induces considerable compression of the Pb-Br bond length and thus an enhanced interaction between atomic orbitals of the antibonding valence band maximum states and the mostly nonbonding conduction band minimum states, resulting in a monotonic decrease in the band gap. On the other hand, structural relaxation tends to reduce the strain energy by decompressing the Pb-Br bond length and simultaneously compressing the Pb-Br-Pb bond angle, which increases the band gap energy. We find that the competition between the volume deformation effect and structural relaxation effect is the origin of the nonmonotonic behavior of the dependence of the band gap on pressure.

7.
J Am Chem Soc ; 146(10): 6618-6627, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349322

RESUMO

Single-crystal semiconductor-based photocatalysts exposing unique crystallographic facets show promising applications in energy and environmental technologies; however, crystal facet engineering through solid-state synthesis for photocatalytic overall water splitting is still challenging. Herein, we develop a novel crystal facet engineering strategy through solid-state recrystallization to synthesize uniform SrTiO3 single crystals exposing tailored {111} facets. The presynthesized low-crystalline SrTiO3 precursors enable the formation of well-defined single crystals through kinetically improved crystal structure transformation during solid-state recrystallization process. By employing subtle Al3+ ions as surface morphology modulators, the crystal surface orientation can be precisely tuned to a controlled percentage of {111} facets. The photocatalytic overall water splitting activity increases with the exposure percentage of {111} facets. Owing to the outstanding crystallinity and favorable anisotropic surface structure, the SrTiO3 single crystals with 36.6% of {111} facets lead to a 3-fold enhancement of photocatalytic hydrogen evolution rates up to 1.55 mmol·h-1 in a stoichiometric ratio of 2:1 than thermodynamically stable SrTiO3 enclosed with isotropic {100} facets.

8.
Proc Natl Acad Sci U S A ; 121(6): e2318341121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289957

RESUMO

As a prototypical photocatalyst, TiO[Formula: see text] has been extensively studied. An interesting yet puzzling experimental fact was that P25-a mixture of anatase and rutile TiO[Formula: see text]-outperforms the individual phases; the origin of this mysterious fact, however, remains elusive. Employing rigorous first-principles calculations, here we uncover a metastable intermediate structure (MIS), which is formed due to confinement at the anatase/rutile interface. The MIS has a high conduction-band minimum level and thus substantially enhances the overpotential of the hydrogen evolution reaction. Also, the corresponding band alignment at the interface leads to efficient separation of electrons and holes. The interfacial confinement additionally creates a wide distribution of the band gap in the vicinity of the interface, which in turn improves optical absorption. These factors all contribute to the enhanced photocatalytic efficiency in P25. Our insights provide a rationale to the puzzling superior photocatalytic performance of P25 and enable a strategy to achieve highly efficient photocatalysis via interface engineering.

9.
J Am Chem Soc ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37916909

RESUMO

The conventional single-defect-mediated Shockley-Read-Hall model suggests that the nonradiative carrier recombination rate in wide-band gap (WBG) semiconductors would be negligible because the single-defect level is expected to be either far from valence-band-maximum (VBM) or conduction-band-minimum (CBM), or both. However, this model falls short of elucidating the substantial nonradiative recombination phenomena often observed experimentally across various WBG semiconductors. Owing to more localized nature of defect states inherent to WBG semiconductors, when the defect charge state changes, there is a pronounced structural relaxation around the local defect site. This suggests that a defect at each charge state may exhibit a few distinct local configurations, namely, a stable configuration and a few metastable/transit state configurations. Consequently, a dual-level nonradiative recombination model should more realistically exist in WBG semiconductors. In this model, through the dual-level mechanism, electron and hole trap levels are different from each other and could be closer to the CBM for the electron trap and closer to the VBM for the hole trap, respectively; therefore, this significantly increases the corresponding electron and hole capture rates, enhancing the overall process of nonradiative recombination, and explains the experimental observations. In this work, taking technically important SiO2 as an illustrative example, we introduce the dual-level mechanism to elucidate the mechanism of nonradiative carrier recombination in WBG semiconductors. Our findings demonstrated strong alignment with available experimental data, reinforcing the robustness of our proposed dual-level model. Our fundamental understanding, therefore, provides a clear physical picture of the issue and can also be applied to predict the defect-related nonradiative carrier recombination characteristics in other WBG materials.

10.
Adv Sci (Weinh) ; 10(33): e2300386, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37807821

RESUMO

The electronic structure of halide perovskites is central to their carrier dynamics, enabling the excellent optoelectronic performance. However, the experimentally resolved transient absorption spectra exhibit large discrepancies from the commonly computed electronic structure by density functional theory. Using pseudocubic CsPbI3 as a prototype example, here, it is unveiled with both ab initio molecular dynamics simulations and transmission electron microscopy that there exists pronounced dynamical lattice distortion in the form of disordered instantaneous octahedral tilting. Rigorous first-principles calculations reveal that the lattice distortion substantially alters the electronic band structure through renormalizing the band dispersions and the interband transition energies. Most notably, the electron and hole effective masses increase by 65% and 88%, respectively; the transition energy between the two highest valence bands decreases by about one half, agreeing remarkably well with supercontinuum transient-absorption measurements. This study further demonstrates how the resulting electronic structure modulates various aspects of the carrier dynamics such as carrier transport, hot-carrier relaxation, Auger recombination, and carrier multiplication in halide perovskites. The insights provide a pathway to engineer carrier transport and relaxation via lattice distortion, enabling the promise to achieve ultrahigh-efficiency photovoltaic devices.

11.
Phys Chem Chem Phys ; 25(27): 17787-17792, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37394989

RESUMO

The organic molecules in hybrid perovskites can easily rotate within the inorganic lattice at room temperature, leading to a crystal-liquid duality. The liquid-like behavior of the organic molecules is commonly believed to play a critical role in the dynamical stability, but the microscopic mechanism remains unclear. Furthermore, the presence of dynamically rotating molecules raises concerns regarding the reliability of assessing the stability of hybrid perovskites based on simple yet commonly used descriptors such as the Goldschmidt tolerance factor. Here we assess the finite-temperature phonons of hybrid perovskites by mapping ab initio molecular dynamics configurations onto an equivalent dynamical pseudo-inorganic lattice and extracting the effective force constants. We find that as compared to the formamidinium or cesium cations, stronger anisotropy and wider range of the thermal motion of the methylammonium molecule are essential for enhancing the dynamical stability of hybrid perovskites. The cation radius that determines the tolerance factor is, in fact, less important. This work not only enables a pathway to further improve the stability of hybrid perovskites, but also provides a general scheme to assess the stability of hybrid materials with dynamical disorder.

12.
Sci Adv ; 9(23): eadg7037, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294751

RESUMO

We report the direct observation of lattice phonons confined at LaAlO3/SrTiO3 (LAO/STO) interfaces and STO surfaces using the sum-frequency phonon spectroscopy. This interface-specific nonlinear optical technique unveiled phonon modes localized within a few monolayers at the interface, with inherent sensitivity to the coupling between lattice and charge degrees of freedom. Spectral evolution across the insulator-to-metal transition at LAO/STO interface revealed an electronic reconstruction at the subcritical LAO thickness, as well as strong polaronic signatures upon formation of the two-dimensional electron gas. We further discovered a characteristic lattice mode from interfacial oxygen vacancies, enabling us to probe such important structural defects in situ. Our study provides a unique perspective on many-body interactions at the correlated oxide interfaces.


Assuntos
Eletrônica , Fônons , Análise Espectral , Elétrons , Óxidos
13.
J Am Chem Soc ; 145(16): 9191-9197, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37125455

RESUMO

Point defect chemistry strongly affects the fundamental properties of materials and has a decisive impact on device performance. The Group-V dopant is prominent acceptor species with high hole concentration in CdTe; however, its local atomic structure is still not clear owing to difficulties in definitive measurements and discrepancies between experimental observations and theoretical models. Herein, we report on direct observation of the local structure for the As dopant in CdTe single crystals by the X-ray fluorescence holography (XFH) technique, which is a powerful tool to visualize three-dimensional atomic configurations around a specific element. The XFH result shows the As substituting on both Cd (AsCd) and Te (AsTe) sites. Although AsTe has been well known as a shallow acceptor, AsCd has not attracted much attention and been discussed so far. Our results provide new insights into point defects by expanding the experimental XFH study in combination with theoretical first-principles studies in II-VI semiconductors.

14.
J Phys Chem Lett ; 14(3): 737-742, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36649585

RESUMO

Enhanced anharmonicity is required to achieve many interesting phenomena in thermoelectricity, superconductivity, ferroelectricity, etc. Here, we propose a novel mechanism for enhancing anharmonicity by forming the low-symmetry off-center ground state, such as the s(II) phase, in two-dimensional AIB2X chalcogenides (AIB = Cu, Ag and Au; X = S, Se, and Te). In this system, the in-plane rotational phonon mode introduces a much stronger anharmonicity in the distorted s(II) phase than in the nondistorted s(I) phase. We show that the stabilities of the s(I) and s(II) phases arise from the ionicity and the ionic size; for example, the low ionicity and the small ionic size favor the s(II) phase. We further demonstrate that the anharmonicity can be tuned by controlling the strain-induced s(II)-to-s(I) phase transition, which explains the anomalous lattice thermal conductivity. Our work relates anharmonicity to symmetry-breaking structural distortion and widens the ways to design excellent thermoelectric materials.

15.
J Phys Chem Lett ; 14(1): 273-278, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36595563

RESUMO

Low p-type doping is a limiting factor to increase CdTe thin-film solar-cell efficiency toward the theoretical Shockley-Queisser limit of 33%. Previous calculations predict relatively high ionization energies for group-V acceptors (P, As, and Sb), and they are plagued by self-compensation, forming AX centers, severely limiting hole concentration. However, recent experiments on CdTe single crystals indicate a much more favorable scenario, where P, As, and Sb behave as shallow acceptors. Using hybrid functional calculations, we solve this puzzle by showing that the ionization energies significantly decrease with the supercell size. When including the effects of spin-orbit coupling and extrapolating the results to the dilute limit, we find these impurities behave as hydrogenic-like shallow acceptors, and AX centers are unstable and do not limit p-type doping. We address the differences between our results and previous theoretical predictions and show that our ionization energies predict hole concentrations that agree with recent temperature-dependent Hall measurements.

16.
Nat Comput Sci ; 3(3): 210-220, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38177885

RESUMO

Conventional computational approaches for modeling defects face difficulties when applied to complex materials, mainly due to the vast configurational space of defects. In this Perspective, we discuss the challenges in calculating defect properties in complex materials, review recent advances in computational techniques and showcase new mechanistic insights developed from these methods. We further discuss the remaining challenges in improving the accuracy and efficiency of defect modeling in complex materials, and provide an outlook on potential research directions.

17.
J Phys Chem Lett ; 13(51): 12026-12031, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36541824

RESUMO

In its lowest-energy three-dimensional (3D) hexagonal crystal structure (γ phase), In2Se3 has a direct band gap of ∼1.8 eV and displays high absorption coefficient, making it a promising semiconductor material for optoelectronics. Incorporation of Te allows for tuning the band gap, adding flexibility to device design and extending the application range. Here we report results of hybrid density functional theory calculations to assess the electronic and optical properties of γ-In2Se3, γ-In2Te3, and γ-In2(Se1-xTex)3 alloys, and initial experiments on the growth and characterization of γ-In2Se3 thin films. The predicted band gap of 1.84 eV for γ-In2Se3 is in good agreement with the absorption onset derived from transmission and reflection spectra of thin films. We show that incorporation of Te gives γ-In2(Se1-xTex)3 alloys with a band gap ranging from 1.84 eV down to 1.23 eV, thus covering the optimal band gap range for single-junction solar cells. In addition, the γ-In2Se3/γ-In2(Se1-xTex)3 bilayer could be employed in tandem solar-cell architectures absorbing at Eg ≈ 1.8 eV and at Eg ≤ 1.4 eV, toward overcoming the ∼33% efficiency set by the Shockley-Queisser limit for single junction solar cells. We also discuss band gap bowing and mixing enthalpies, aiming at adding γ-In2Se3, γ-In2Te3, and γ-In2(Se1-xTex)3 alloys to the available toolbox of materials for solar cells and other optoelectronic applications.

18.
J Phys Chem Lett ; 13(49): 11438-11443, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36468975

RESUMO

Cuprous halides (CuX; X = Cl, Br, or I) have been extensively investigated in the literature, but many of their fundamental properties are still not very well understood. For example, debate about their crystal stability, i.e., whether the ground-state structures of CuX are zinc-blende, still exists. By performing rigorous first-principles calculations for CuX using an accurate hybrid functional, we unambiguously demonstrate that CuX are indeed stable in the zinc-blende structure, but their accurate description requires careful treatment of the exchange interaction. Previous calculations based on local or semilocal density functionals underestimated the important contributions from exchange interactions and thus underestimated the energy separation between the unoccupied 4s and occupied 3d orbitals in Cu, resulting in an overestimation of the s-d coupling and the energy reduction of distorted CuX. Our study clarifies a long-standing and highly debated issue with regard to ground-state structures of CuX and advances the physics of phase stability and the importance of s-d coupling in semiconductors.

19.
Nat Commun ; 13(1): 3397, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697701

RESUMO

Development of lead-free inorganic perovskite material, such as Cs2AgBiBr6, is of great importance to solve the toxicity and stability issues of traditional lead halide perovskite solar cells. However, due to a wide bandgap of Cs2AgBiBr6 film, its light absorption ability is largely limited and the photoelectronic conversion efficiency is normally lower than 4.23%. In this text, by using a hydrogenation method, the bandgap of Cs2AgBiBr6 films could be tunable from 2.18 eV to 1.64 eV. At the same time, the highest photoelectric conversion efficiency of hydrogenated Cs2AgBiBr6 perovskite solar cell has been improved up to 6.37% with good environmental stability. Further investigations confirmed that the interstitial doping of atomic hydrogen in Cs2AgBiBr6 lattice could not only adjust its valence and conduction band energy levels, but also optimize the carrier mobility and carrier lifetime. All these works provide an insightful strategy to fabricate high performance lead-free inorganic perovskite solar cells.

20.
Phys Rev Lett ; 128(13): 136401, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35426707

RESUMO

It has been experimentally observed that light-induced lattice expansion could enhance the solar conversion efficiency in hybrid perovskites, but the origin remains elusive. By performing rigorous first-principles calculations for a prototypical hybrid-perovskite FAPbI_{3} (FA: formamidinium), we show that 1% lattice expansion could already reduce the nonradiative capture coefficient by one order of magnitude. Unexpectedly, the suppressed nonradiative capture is not caused by changes in the band gap or defect transition level due to lattice expansion, but originates from enhanced defect relaxations associated with charge-state transitions in the expanded lattice. These insights not only provide a rationale for the efficiency enhancement by lattice expansion in hybrid perovskites, but also offer a general approach to the manipulation of nonradiative capture via strain engineering in a wide spectrum of optoelectronic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA