Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Commun Biol ; 7(1): 795, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951640

RESUMO

The peroxisome is a versatile organelle that performs diverse metabolic functions. PEX3, a critical regulator of the peroxisome, participates in various biological processes associated with the peroxisome. Whether PEX3 is involved in peroxisome-related redox homeostasis and myocardial regenerative repair remains elusive. We investigate that cardiomyocyte-specific PEX3 knockout (Pex3-KO) results in an imbalance of redox homeostasis and disrupts the endogenous proliferation/development at different times and spatial locations. Using Pex3-KO mice and myocardium-targeted intervention approaches, the effects of PEX3 on myocardial regenerative repair during both physiological and pathological stages are explored. Mechanistically, lipid metabolomics reveals that PEX3 promotes myocardial regenerative repair by affecting plasmalogen metabolism. Further, we find that PEX3-regulated plasmalogen activates the AKT/GSK3ß signaling pathway via the plasma membrane localization of ITGB3. Our study indicates that PEX3 may represent a novel therapeutic target for myocardial regenerative repair following injury.


Assuntos
Membrana Celular , Integrina beta3 , Camundongos Knockout , Regeneração , Animais , Camundongos , Integrina beta3/metabolismo , Integrina beta3/genética , Membrana Celular/metabolismo , Miócitos Cardíacos/metabolismo , Masculino , Plasmalogênios/metabolismo , Transdução de Sinais , Miocárdio/metabolismo , Miocárdio/patologia , Camundongos Endogâmicos C57BL , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Traumatismos Cardíacos/genética , Proliferação de Células , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
2.
J Am Heart Assoc ; 13(13): e034805, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38934866

RESUMO

BACKGROUND: The regenerative capacity of the adult mammalian hearts is limited. Numerous studies have explored mechanisms of adult cardiomyocyte cell-cycle withdrawal. This translational study evaluated the effects and underlying mechanism of rhCHK1 (recombinant human checkpoint kinase 1) on the survival and proliferation of cardiomyocyte and myocardial repair after ischemia/reperfusion injury in swine. METHODS AND RESULTS: Intramyocardial injection of rhCHK1 protein (1 mg/kg) encapsulated in hydrogel stimulated cardiomyocyte proliferation and reduced cardiac inflammation response at 3 days after ischemia/reperfusion injury, improved cardiac function and attenuated ventricular remodeling, and reduced the infarct area at 28 days after ischemia/reperfusion injury. Mechanistically, multiomics sequencing analysis demonstrated enrichment of glycolysis and mTOR (mammalian target of rapamycin) pathways after rhCHK1 treatment. Co-Immunoprecipitation (Co-IP) experiments and protein docking prediction showed that CHK1 (checkpoint kinase 1) directly bound to and activated the Serine 37 (S37) and Tyrosine 105 (Y105) sites of PKM2 (pyruvate kinase isoform M2) to promote metabolic reprogramming. We further constructed plasmids that knocked out different CHK1 and PKM2 amino acid domains and transfected them into Human Embryonic Kidney 293T (HEK293T) cells for CO-IP experiments. Results showed that the 1-265 domain of CHK1 directly binds to the 157-400 amino acids of PKM2. Furthermore, hiPSC-CM (human iPS cell-derived cardiomyocyte) in vitro and in vivo experiments both demonstrated that CHK1 stimulated cardiomyocytes renewal and cardiac repair by activating PKM2 C-domain-mediated cardiac metabolic reprogramming. CONCLUSIONS: This study demonstrates that the 1-265 amino acid domain of CHK1 binds to the 157-400 domain of PKM2 and activates PKM2-mediated metabolic reprogramming to promote cardiomyocyte proliferation and myocardial repair after ischemia/reperfusion injury in adult pigs.


Assuntos
Proliferação de Células , Quinase 1 do Ponto de Checagem , Modelos Animais de Doenças , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/genética , Humanos , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Células HEK293 , Suínos , Reprogramação Celular , Proteínas de Ligação a Hormônio da Tireoide , Regeneração , Ligação Proteica , Sus scrofa , Remodelação Ventricular/fisiologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Metabolismo Energético/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Reprogramação Metabólica
3.
Opt Express ; 32(8): 14420-14434, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859387

RESUMO

Doppler lidar is an active laser remote sensing instrument. However, beam blockage caused by low-altitude obstacles is a critical factor affecting the quality of lidar data. To reconstruct the line of sight velocities (LOSV) in areas with beam blockages and to evaluate the effectiveness of reconstruction results, the LOSV-filling network (LFnet) approach based on generative adversarial networks (GANs) and an evaluation scheme based on the degree of blockage are proposed in this paper. The LFnet comprises two adversarial models. The first adversarial model captures the structural features of LOSV to output the edge map, and the second adversarial fills in the blockage area using the edge map. We have built a packaged dataset consisting of training, validation and test datasets with mask sets. Then the sensitivity of the reconstruction effectiveness with different shielding conditions is studied, to reveal the mechanism of shielding influencing the reconstruction. A series of indicators were used to evaluate the model's performance, including the traditional indicators and the proposed indicator of root mean square error (RMSE). Finally, LFnet was demonstrated in a practical application in an airport. The complete process of an easterly gust front is reconstructed with RMSE less than 0.85 m/s, which has significance for flight safety.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38647881

RESUMO

Heart failure and myocardial infarction, global health concerns, stem from limited cardiac regeneration post-injury. Myocardial infarction, typically caused by coronary artery blockage, leads to cardiac muscle cell damage, progressing to heart failure. Addressing the adult heart's minimal self-repair capability is crucial, highlighting cardiac regeneration research's importance. Studies reveal a metabolic shift from anaerobic glycolysis to oxidative phosphorylation in neonates as a key factor in impaired cardiac regeneration, with mitochondria being central. The heart's high energy demands rely on a robust mitochondrial network, essential for cellular energy, cardiac health, and regenerative capacity. Mitochondria's influence extends to redox balance regulation, signaling molecule interactions, and apoptosis. Changes in mitochondrial morphology and quantity also impact cardiac cell regeneration. This article reviews mitochondria's multifaceted role in cardiac regeneration, particularly in myocardial infarction and heart failure models. Understanding mitochondrial function in cardiac regeneration aims to enhance myocardial infarction and heart failure treatment methods and insights.

5.
J Mol Cell Cardiol ; 189: 66-82, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432502

RESUMO

The regenerative capacity of the adult mammalian heart is limited, while the neonatal heart is an organ with regenerative and proliferative ability. Activating adult cardiomyocytes (CMs) to re-enter the cell cycle is an effective therapeutic method for ischemic heart disease such as myocardial infarction (MI) and heart failure. Here, we aimed to reveal the role and potential mechanisms of cellular nucleic acid binding protein (CNBP) in cardiac regeneration and repair after heart injury. CNBP is highly expressed within 7 days post-birth while decreases significantly with the loss of regenerative ability. In vitro, overexpression of CNBP promoted CM proliferation and survival, whereas knockdown of CNBP inhibited these processes. In vivo, knockdown of CNBP in CMs robustly hindered myocardial regeneration after apical resection in neonatal mice. In adult MI mice, CM-specific CNBP overexpression in the infarct border zone ameliorated myocardial injury in acute stage and facilitated CM proliferation and functional recovery in the long term. Quantitative proteomic analysis with TMT labeling showed that CNBP overexpression promoted the DNA replication, cell cycle progression, and cell division. Mechanically, CNBP overexpression increased the expression of ß-catenin and its downstream target genes CCND1 and c-myc; Furthermore, Luciferase reporter and Chromatin immunoprecipitation (ChIP) assays showed that CNBP could directly bind to the ß-catenin promoter and promote its transcription. CNBP also upregulated the expression of G1/S-related cell cycle genes CCNE1, CDK2, and CDK4. Collectively, our study reveals the positive role of CNBP in promoting cardiac repair after injury, providing a new therapeutic option for the treatment of MI.


Assuntos
Coração , Miócitos Cardíacos , Proteínas de Ligação a RNA , Animais , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Proliferação de Células , Mamíferos/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Ácidos Nucleicos/metabolismo , Proteômica , Fatores de Transcrição/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Regeneração , Coração/fisiologia
6.
Opt Lett ; 48(23): 6104-6107, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039202

RESUMO

Remote sensing of atmospheric refractive index structure constant ($\boldsymbol{C}_{\boldsymbol{n}}^2$) using lidar incorporating a single-photon detector (SPD) is proposed. The influence of turbulence on the fiber coupling efficiency with different fiber modes is analyzed. $\boldsymbol{C}_{\boldsymbol{n}}^2$ can be derived from the ratio of the backscattering signals counted on single-mode and multimode fiber-coupling channels of the SPD. In the experiment, by eliminating the shot noise effect on the fluctuation of the ratio, the lowest coupling ratio is used to retrieve $\boldsymbol{C}_{\boldsymbol{n}}^2$ and demonstrated by comparing to the results measured from a large aperture scintillometer (LAS). Good agreement between results from the LAS and the lidar is achieved. The correlation coefficients are 0.90, 0.89, and 0.89, under three different weather conditions.

7.
Arch Toxicol ; 97(12): 3209-3226, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37798514

RESUMO

Administration of CHK1-targeted anticancer therapies is associated with an increased cumulative risk of cardiac complications, which is further amplified when combined with gemcitabine. However, the underlying mechanisms remain elusive. In this study, we generated hiPSC-CMs and murine models to elucidate the mechanisms underlying CHK1 inhibition combined with gemcitabine-induced cardiotoxicity and identify potential targets for cardioprotection. Mice were intraperitoneally injected with 25 mg/kg CHK1 inhibitor AZD7762 and 20 mg/kg gemcitabine for 3 weeks. hiPSC-CMs and NMCMs were incubated with 0.5 uM AZD7762 and 0.1 uM gemcitabine for 24 h. Both pharmacological inhibition or genetic deletion of CHK1 and administration of gemcitabine induced mtROS overproduction and pyroptosis in cardiomyocytes by disrupting mitochondrial respiration, ultimately causing heart atrophy and cardiac dysfunction in mice. These toxic effects were further exacerbated with combination administration. Using mitochondria-targeting sequence-directed vectors to overexpress CHK1 in cardiomyocyte (CM) mitochondria, we identified the localization of CHK1 in CM mitochondria and its crucial role in maintaining mitochondrial redox homeostasis for the first time. Mitochondrial CHK1 function loss mediated the cardiotoxicity induced by AZD7762 and CHK1-knockout. Mechanistically, mitochondrial CHK1 directly phosphorylates SIRT3 and promotes its expression within mitochondria. On the contrary, both AZD7762 or CHK1-knockout and gemcitabine decreased mitochondrial SIRT3 abundance, thus resulting in respiration dysfunction. Further hiPSC-CMs and mice experiments demonstrated that SIRT3 overexpression maintained mitochondrial function while alleviating CM pyroptosis, and thereby improving mice cardiac function. In summary, our results suggest that targeting SIRT3 could represent a novel therapeutic approach for clinical prevention and treatment of cardiotoxicity induced by CHK1 inhibition and gemcitabine.


Assuntos
Quinase 1 do Ponto de Checagem , Células-Tronco Pluripotentes Induzidas , Sirtuína 3 , Animais , Camundongos , Cardiotoxicidade/metabolismo , Gencitabina , Homeostase , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos , Oxirredução , Sirtuína 3/genética , Quinase 1 do Ponto de Checagem/metabolismo
8.
J Biomed Res ; 37(4): 315-325, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-37088562

RESUMO

To investigate the feasibility and effectiveness of establishing porcine ischemia-reperfusion models by ligating the left anterior descending (LAD) coronary artery, we first randomly divided 16 male Bama pigs into a sham group and a model group. After anesthesia, we separated the arteries and veins. Subsequently, we rapidly located the LAD coronary artery at the beginning of its first diagonal branch through a mid-chest incision. Then, we loosened and released the ligation line after five minutes of pre-occlusion. Finally, we ligated the LAD coronary artery in situ two minutes later and loosened the ligature 60 min after ischemia. Compared with the sham group, electrocardiogram showed multiple continuous lead ST-segment elevations, and ultrasound cardiogram showed significantly lower ejection fraction and left ventricular fractional shortening at one hour and seven days post-operation in the model group. Twenty-four hours after the operation, cardiac troponin T and creatine kinase-MB isoenzyme levels significantly increased in the model group, compared with the sham group. Hematoxylin and eosin staining showed the presence of many inflammatory cells infiltrating the interstitium of the myocardium in the model group but not in the sham group. Masson staining revealed a significant increase in infarct size in the ischemia/reperfusion group. All eight pigs in the model group recovered with normal sinus heart rates, and the survival rate was 100%. In conclusion, the method can provide an accurate and stable large animal model for preclinical research on ischemia/reperfusion with a high success rate and homogeneity of the myocardial infarction area.

9.
Cardiol J ; 30(4): 576-586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34490603

RESUMO

BACKGROUND: High D-dimer (DD) is associated with short-term adverse outcomes in patients with acute coronary syndrome (ACS). In ACS patients who underwent percutaneous coronary intervention (PCI), however, the value of DD (or combined with neutrophil to lymphocyte ratio [NLR]) to predict long-term major adverse cardiovascular events (MACEs) has not been fully evaluated. METHODS: Patients diagnosed with ACS and receiving PCI were included. The primary outcome was MACEs. Cox proportional hazards regression and logistic regression were used to illustrate the relationship between clinical risk factors, biomarkers and MACEs. Survival models were developed based on significant factors and evaluated by the Concordance-index (C-index). RESULTS: The final study cohort was comprised of 650 patients (median age, 64 years; 474 males), including 98 (15%) with MACEs during a median follow-up period of 40 months. According to the cut-off value of DD and NLR, the patients were separated into four groups: high DD or nonhigh DD with high or nonhigh NLR. After adjusting for confounding variables, DD (adjusted hazard ratio [aHR]: 2.39, 95% confidence interval [CI]: 1.52-3.76) and NLR (aHR: 2.71, 95% CI: 1.78-4.11) were independently associated with long-term MACEs. Moreover, patients with both high DD and NLR had a significantly higher risk in MACEs when considering patients with nonhigh DD and NLR as reference (aHR: 6.19, 95% CI: 3.30-11.61). The area under curve increased and reached 0.70 in differentiating long-term MACEs when DD and NLR were combined, and survival models incorporating the two exhibited a stronger predictive power (C-index: 0.75). CONCLUSIONS: D-dimer (or combined with NLR) can be used to predict long-term MACEs in ACS patients undergoing PCI.


Assuntos
Síndrome Coronariana Aguda , Intervenção Coronária Percutânea , Masculino , Humanos , Pessoa de Meia-Idade , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/cirurgia , Intervenção Coronária Percutânea/efeitos adversos , Neutrófilos , Linfócitos , Fatores de Risco
10.
Front Cardiovasc Med ; 9: 970745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082129

RESUMO

The mammalian heart possesses entire regeneration capacity after birth, which is lost in adulthood. The role of the kinase network in myocardial regeneration remains largely elusive. SGK3 (threonine-protein kinase 3) is a functional kinase we identified previously with the capacity to promote cardiomyocyte proliferation and cardiac repair after myocardial infarction. However, the upstream signals regulating SGK3 are still unknown. Based on the quantitative phosphoproteomics data and pulldown assay, we identified cyclin-dependent kinase 9 (CDK9) as a novel therapeutic target in regeneration therapy. The direct combination between CDK9 and SGK3 was further confirmed by co-immunoprecipitation (Co-IP). CDK9 is highly expressed in the newborn period and rarely detected in the adult myocardium. In vitro, the proliferation ratio of primary cardiomyocytes was significantly elevated by CDK9 overexpression while inhibited by CDK9 knockdown. In vivo, inhibition of CDK9 shortened the time window of cardiac regeneration after apical resection (AR) in neonatal mice, while overexpression of CDK9 significantly promoted mature cardiomyocytes (CMs) to re-enter the cell cycle and cardiac repair after myocardial infarction (MI) in adult mice. Mechanistically, CDK9 promoted cardiac repair by directly activating SGK3 and downstream GSK-3ß/ß-catenin pathway. Consequently, our study indicated that CDK9 might be a novel target for MI therapy by stimulating myocardial regeneration.

11.
J Mol Cell Cardiol ; 166: 91-106, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35235835

RESUMO

Adult mammals have limited potential for cardiac regeneration after injury. In contrast, neonatal mouse heart, up to 7 days post birth, can completely regenerate after injury. Therefore, identifying the key factors promoting the proliferation of endogenous cardiomyocytes (CMs) is a critical step in the development of cardiac regeneration therapies. In our previous study, we predicted that mitogen-activated protein kinase (MAPK) interacting serine/threonine-protein kinase 2 (MNK2) has the potential of promoting regeneration by using phosphoproteomics and iGPS algorithm. Here, we aimed to clarify the role of MNK2 in cardiac regeneration and explore the underlying mechanism. In vitro, MNK2 overexpression promoted, and MNK2 knockdown suppressed cardiomyocyte proliferation. In vivo, inhibition of MNK2 in CMs impaired myocardial regeneration in neonatal mice. In adult myocardial infarcted mice, MNK2 overexpression in CMs in the infarct border zone activated cardiomyocyte proliferation and improved cardiac repair. In CMs, MNK2 binded to eIF4E and regulated its phosphorylation level. Knockdown of eukaryotic translation initiation factor (eIF4E) impaired the proliferation-promoting effect of MNK2 in CMs. MNK2-eIF4E axis stimulated CMs proliferation by activating cyclin D1. Our study demonstrated that MNK2 kinase played a critical role in cardiac regeneration. Over-expression of MNK2 promoted cardiomyocyte proliferation in vitro and in vivo, at least partly, by activating the eIF4E-cyclin D1 axis. This investigation identified a novel target for heart regenerative therapy.


Assuntos
Fator de Iniciação 4E em Eucariotos , Infarto do Miocárdio , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Ciclina D1/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Mamíferos/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação
12.
Bioengineered ; 13(4): 8836-8849, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35333698

RESUMO

Myocardial fibrosis, a common pathological manifestation of cardiac remodeling (CR), often leads to heart failure (HF) and even death. The underlying molecular mechanism of the role of TRIM33 in Ang II-induced myocardial fibrosis is not fully understood. We found that TRIM33 was specifically upregulated in CFs and myocardial tissue after Ang II stimulation. Adult mice induced by Ang II were used as in vivo models, and Ang II-induced neonatal mouse primary cardiac fibroblasts (CFs) were used as in vitro models. The level of CF fibrosis in vitro was assessed by CF proliferation, migration, activation and extracellular matrix (ECM) synthesis. In addition, Masson staining, the heart weight/body weight (HW/BW) ratio and echocardiography were used to evaluate the in vivo effect of TRIM33. TRIM33 expression was specifically upregulated in CFs and myocardial tissue after Ang II stimulation. In in vitro experiments, we found that TRIM33 knockdown promoted Ang II-induced CF proliferation, while TRIM33 overexpression weakened Ang II-induced CF proliferation, migration, activation and collagen synthesis. Mechanistically, we showed that TRIM33, negatively regulated by HSPB5, mediated its antifibrotic effect by inhibiting the activation of TGF-ß1 and its downstream genes, Smad3 and Smad4. Finally, TRIM33 overexpression suppressed fibrosis and promoted cardiac repair and functional recovery in Ang II-induced mice. Our results clearly establish that TRIM33 limits cardiac fibrosis by hindering CF proliferation, migration, activation and collagen synthesis. Enhancing these beneficial functions of TRIM33 by a targeting vector might be a novel therapeutic strategy for CR.


Assuntos
Cardiomiopatias , Fatores de Transcrição , Cadeia B de alfa-Cristalina , Angiotensina II/metabolismo , Angiotensinogênio/metabolismo , Angiotensinogênio/farmacologia , Animais , Colágeno/metabolismo , Fibroblastos , Fibrose , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Cadeia B de alfa-Cristalina/metabolismo
13.
Opt Express ; 30(3): 3654-3664, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209619

RESUMO

Observation of a melting layer using a 1.55 µm coherent Doppler lidar (CDL) is first presented during a stratiform precipitation event. Simultaneous radar measurements are also performed by co-located 1.24 cm micro rain radar (MRR) and 10.6 cm Doppler weather radar (DWR). As a well-known bright band in radar reflectivity appears during precipitation, an interesting dark band about 160 m below that in lidar backscattering is observed. Due to the absorption effect, the backscattering from raindrops at 1.55 µm is found much weaker than that at short wavelengths usually used in direct detection lidars. However, the CDL provides additional Doppler information which is helpful for melting layer identification. For example, a spectrum bright band with broadened width and sign conversion of skewness is detected in this case. After a deep analysis of the power spectra, the aerosol and precipitation components are separated. The fall speed of hydrometeors given by CDL is found smaller than that of MRR, with the differences of approximately 0.5 m/s and 1.5 m/s for the snow and rainfall, respectively. To illustrate the influence of absorption effect, simulations of the backscatter coefficient and extinction coefficient of aerosol and rainfall are also performed at the wavelength range of 0.3 ∼ 2.2 µm using the Mie theory.

14.
Chin Med J (Engl) ; 135(5): 557-570, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35120357

RESUMO

ABSTRACT: Cardiovascular disease (CVD) remains the leading cause of death worldwide. Therefore, exploring the mechanism of CVDs and critical regulatory factors is of great significance for promoting heart repair, reversing cardiac remodeling, and reducing adverse cardiovascular events. Recently, significant progress has been made in understanding the function of protein kinases and their interactions with other regulatory proteins in myocardial biology. Protein kinases are positioned as critical regulators at the intersection of multiple signals and coordinate nearly every aspect of myocardial responses, regulating contractility, metabolism, transcription, and cellular death. Equally, reconstructing the disrupted protein kinases regulatory network will help reverse pathological progress and stimulate cardiac repair. This review summarizes recent researches concerning the function of protein kinases in CVDs, discusses their promising clinical applications, and explores potential targets for future treatments.


Assuntos
Doenças Cardiovasculares , Coração , Humanos , Miocárdio , Proteínas Quinases
15.
Biochem Biophys Res Commun ; 595: 62-68, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35093641

RESUMO

BACKGROUND: P16ink4a can accumulate in senescent cells and can be induced by different oncogenic stimulations. These functions make p16ink4a a biomarker of senescence and cancer. However, the exact role of p16ink4a remains unclear in cardiovascular disease. This study was aimed to investigate the role of p16ink4a in cardiac remodeling after myocardial infarction (MI). METHODS: In vivo, gain and loss of function experiments using p16ink4a overexpression and knockdown adenovirus were induced to determine the effect of p16ink4a on cardiac structure and function after MI. The in vitro effects of p16ink4a were evaluated by overexpression and knockdown adenovirus of p16ink4a on isolated neonatal mouse cardiac myocytes (NMCMs) and neonatal mouse cardiac fibroblasts (NMCFs). RESULTS: Expression level of p16ink4a was increased after MI and enriched in the infarction area. In vivo, overexpression of p16ink4a protected, while knockdown of p16ink4a worsened cardiac function. In vitro, p16ink4a did not influence the hypertrophy of NMCMs. Overexpression of p16ink4a inhibited the proliferation and migration of NMCFs and reduced the level of collagen I and α-SMA. Consistently, knockdown of p16ink4a in vitro displayed the opposite effects. Further mechanism studies revealed that p16ink4a affected the expression level of cyclin-dependent kinase 4 (CDK4) and phosphorylation of retinoblastoma (pRb), which could be a potential pathway in regulating cardiac remodeling after MI. CONCLUSION: Overexpression of 16ink4a in cardiac fibroblasts can ameliorate cardiac dysfunction and attenuate pathological cardiac remodeling in mice after MI by regulating the p16ink4a/CDK4/pRb pathway.


Assuntos
Quinase 4 Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Expressão Gênica , Infarto do Miocárdio/genética , Proteína do Retinoblastoma/genética , Remodelação Ventricular/genética , Animais , Animais Recém-Nascidos , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Quinase 4 Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Masculino , Camundongos Endogâmicos ICR , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fosforilação , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais/genética
16.
Front Cell Dev Biol ; 9: 794879, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901035

RESUMO

Abnormalities in programmed cell death (PCD) signaling cascades can be observed in the development and progression of various cardiovascular diseases, such as apoptosis, necrosis, pyroptosis, ferroptosis, and cell death associated with autophagy. Aberrant activation of PCD pathways is a common feature leading to excessive cardiac remodeling and heart failure, involved in the pathogenesis of various cardiovascular diseases. Conversely, timely activation of PCD remodels cardiac structure and function after injury in a spatially or temporally restricted manner and corrects cardiac development similarly. As many cardiovascular diseases exhibit abnormalities in PCD pathways, drugs that can inhibit or modulate PCD may be critical in future therapeutic strategies. In this review, we briefly describe the process of various types of PCD and their roles in the occurrence and development of cardiovascular diseases. We also discuss the interplay between different cell death signaling cascades and summarize pharmaceutical agents targeting key players in cell death signaling pathways that have progressed to clinical trials. Ultimately a better understanding of PCD involved in cardiovascular diseases may lead to new avenues for therapy.

17.
J Am Heart Assoc ; 10(22): e022802, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34726469

RESUMO

Background The neonatal heart maintains its entire regeneration capacity within days after birth. Using quantitative phosphoproteomics technology, we identified that SGK3 (serine/threonine-protein kinase 3) in the neonatal heart is highly expressed and activated after myocardial infarction. This study aimed to uncover the function and related mechanisms of SGK3 on cardiomyocyte proliferation and cardiac repair after apical resection or ischemia/reperfusion injury. Methods and Results The effect of SGK3 on proliferation and oxygen glucose deprivation/reoxygenation- induced apoptosis in isolated cardiomyocytes was evaluated using cardiomyocyte-specific SGK3 overexpression or knockdown adenovirus5 vector. In vivo, gain- and loss-of-function experiments using cardiomyocyte-specific adeno-associated virus 9 were performed to determine the effect of SGK3 in cardiomyocyte proliferation and cardiac repair after apical resection or ischemia/reperfusion injury. In vitro, overexpression of SGK3 enhanced, whereas knockdown of SGK3 decreased, the cardiomyocyte proliferation ratio. In vivo, inhibiting the expression of SGK3 shortened the time window of cardiac regeneration after apical resection in neonatal mice, and overexpression of SGK3 significantly promoted myocardial repair and cardiac function recovery after ischemia/reperfusion injury in adult mice. Mechanistically, SGK3 promoted cardiomyocyte regeneration and myocardial repair after cardiac injury by inhibiting GSK-3ß (glycogen synthase kinase-3ß) activity and upregulating ß-catenin expression. SGK3 also upregulated the expression of cell cycle promoting genes G1/S-specific cyclin-D1, c-myc (cellular-myelocytomatosis viral oncogene), and cdc20 (cell division cycle 20), but downregulated the expression of cell cycle negative regulators cyclin kinase inhibitor P 21 and cyclin kinase inhibitor P 27. Conclusions Our study reveals a key role of SGK3 on cardiac repair after apical resection or ischemia/reperfusion injury, which may reopen a novel therapeutic option for myocardial infarction.


Assuntos
Glicogênio Sintase Quinase 3 beta/genética , Infarto do Miocárdio , Traumatismo por Reperfusão , Animais , Apoptose , Camundongos , Infarto do Miocárdio/genética , Miócitos Cardíacos , Proteínas Serina-Treonina Quinases/genética , Serina/química , Treonina/química , beta Catenina/genética
18.
Light Sci Appl ; 10(1): 212, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642297

RESUMO

Spectroscopy is a well-established nonintrusive tool that has played an important role in identifying and quantifying substances, from quantum descriptions to chemical and biomedical diagnostics. Challenges exist in accurate spectrum analysis in free space, which hinders us from understanding the composition of multiple gases and the chemical processes in the atmosphere. A photon-counting distributed free-space spectroscopy is proposed and demonstrated using lidar technique, incorporating a comb-referenced frequency-scanning laser and a superconducting nanowire single-photon detector. It is suitable for remote spectrum analysis with a range resolution over a wide band. As an example, a continuous field experiment is carried out over 72 h to obtain the spectra of carbon dioxide (CO2) and semi-heavy water (HDO, isotopic water vapor) in 6 km, with a range resolution of 60 m and a time resolution of 10 min. Compared to the methods that obtain only column-integrated spectra over kilometer-scale, the range resolution is improved by 2-3 orders of magnitude in this work. The CO2 and HDO concentrations are retrieved from the spectra acquired with uncertainties as low as ±1.2% and ±14.3%, respectively. This method holds much promise for increasing knowledge of atmospheric environment and chemistry researches, especially in terms of the evolution of complex molecular spectra in open areas.

19.
Opt Express ; 29(11): 17246-17257, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154270

RESUMO

The coherent Doppler wind lidar (CDL) shows capability in precipitation detection. Retrieval of the raindrop size distribution (DSD) using CDL is still challenging work, as both accurate backscattering cross section at the working wavelength and reflectivity spectrum of raindrop are required. Firstly, the Mie theory and the vectorial complex ray model (VCRM) are applied to calculate backscattering cross section for small spheric raindrops and large oblate raindrops, respectively. Secondly, an iterative deconvolution method is proposed to separate the reflectivity spectrum of raindrop from the lidar power spectrum, which is a superposition of rain and aerosol components. An accompanying aerosol signal model considering the effect of temporal window, from the same height and time, is used to improve the accuracy and robustness of the iteration. In experiment, a co-located micro rain radar (MRR) is used for comparison. Good agreements are obtained despite tremendous differences in wavelength and scattering characteristics. As an example, at 600 m height, the R2 of linear fitting to the mean rain velocity and mean raindrop diameter between CDL and MRR are 0.96 and 0.93, respectively.

20.
J Cardiovasc Pharmacol ; 77(5): 549-556, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33951693

RESUMO

ABSTRACT: Checkpoint kinase 1 (CHK1) plays a broad role in regulating the cell cycle process and is involved in the pathogenesis of various malignant tumors. Preclinical and animal studies have shown that CHK1 inhibitors can enhance the cytotoxic effects of radiotherapy and chemotherapy. Currently, CHK1 inhibitors are actively tested in clinical trials. Nonspecific adverse cerebral cardiovascular events were reported after CHK1 inhibitor use; these events need to be monitored and managed carefully during the clinical application of CHK1 inhibitors. To get a better understanding of these, noteworthy adverse cardiovascular events, we systemically searched the PubMed, Cochrane databases, and clinicaltrials.gov, for relevant clinical trials and case reports. A total of 19 studies were identified and included in this review. Among the reported cerebral cardiovascular events, the most common is incident abnormal blood pressure fluctuations (n = 35), followed by incident QTcF prolongation (n = 15), arrhythmia (n = 13, 3 atrial fibrillation and 10 bradycardia), thromboembolic events (n = 9, 6 pulmonary embolisms, 2 stroke, and 1 cerebrovascular event), cardiac troponin T elevation (n = 2), and ischemic chest pain (n = 2). Besides, the estimated incidence for overall cardiovascular events based on the available data is 0.292 (95% confidence interval: 0.096-0.488). CHK1 inhibitors administered in tumor patients on top of conventional therapies can not only enhance the antitumor effects, but also induce adverse cerebral cardiovascular events. It is, therefore, of importance to carefully monitor and manage the CHK1 inhibitor-induced adverse effects on the cerebral cardiovascular system while applying CHK1 inhibitors to tumor patients.


Assuntos
Antineoplásicos/efeitos adversos , Doenças Cardiovasculares/induzido quimicamente , Sistema Cardiovascular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/efeitos adversos , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Circulação Cerebrovascular/efeitos dos fármacos , Transtornos Cerebrovasculares/induzido quimicamente , Transtornos Cerebrovasculares/fisiopatologia , Quinase 1 do Ponto de Checagem/metabolismo , Hemodinâmica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/patologia , Medição de Risco , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA