Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(19): e2310811, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38358297

RESUMO

Detecting short-wavelength infrared (SWIR) light has underpinned several emerging technologies. However, the development of highly sensitive organic photodetectors (OPDs) operating in the SWIR region is hindered by their poor external quantum efficiencies (EQEs) and high dark currents. Herein, the development of high-sensitivity SWIR-OPDs with an efficient photoelectric response extending up to 1.3 µm is reported. These OPDs utilize a new ultralow-bandgap molecular semiconductor featuring a quinoidal tricyclic electron-deficient central unit and multiple non-covalent conformation locks. The SWIR-OPD achieves an unprecedented EQE of 26% under zero bias and an even more impressive EQE of up to 41% under a -4 V bias at 1.10 µm, effectively pushing the detection limit of silicon photodetectors. Additionally, the low energetic disorder and trap density in the active layer lead to significant suppression of thermal-generation carriers and dark current, resulting in excellent detectivity (Dsh *) exceeding 1013 Jones from 0.50 to 1.21 µm and surpassing 1012 Jones even at 1.30 µm under zero bias, marking the highest achievements for OPDs beyond the silicon limit to date. Validation with photoplethysmography measurements, a spectrometer prototype in the 0.35-1.25 µm range, and image capture under 1.20 µm irradiation demonstrate the extensive applications of this SWIR-OPD.

2.
Lab Chip ; 24(2): 356-366, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38108440

RESUMO

Non-electronic wearables that utilize skin-interfaced microfluidic technology have revolutionized the collection and analysis of human sweat, providing valuable biochemical information and indicating body hydration status. However, existing microfluidic devices often require constant monitoring of data during sweat assessment, thereby impeding the user experience and potentially missing anomalous physiological events, such as excessive sweating. Moreover, the complex manufacturing process hampers the scalability and large-scale production of such devices. Herein, we present a self-feedback microfluidic device with a unique dehydration reminder through a cost-effective "CAD-to-3D device" approach. It incorporates two independent systems for sweat collection and thermal feedback, including serpentine microchannels, reservoirs, petal-like bursting valves and heating chambers. The device operates by sequentially collecting sweat in the channels and reservoirs, and then activating thermal stimulators in the heating chambers through breaking the valves, initiating a chemical exothermic reaction. Human trials validate that the devices effectively alert users to potential dehydration by inducing skin thermal sensations triggered by sweat sampling. The proposed device offers facile scalability and customizable fabrication, and holds promise for managing hydration strategies in real-world scenarios, benefiting individuals engaged in sporting activities or exposed to high-temperature settings.


Assuntos
Técnicas Biossensoriais , Suor , Humanos , Sudorese , Microfluídica , Retroalimentação , Desidratação , Dispositivos Lab-On-A-Chip
3.
Adv Sci (Weinh) ; 11(10): e2306023, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38133495

RESUMO

The erratic, intermittent, and unpredictable nature of sweat production, resulting from physiological or psychological fluctuations, poses intricacies to consistently and accurately sample and evaluate sweat biomarkers. Skin-interfaced microfluidic devices that rely on colorimetric mechanisms for semi-quantitative detection are particularly susceptible to these inaccuracies due to variations in sweat secretion rate or instantaneous volume. This work introduces a skin-interfaced colorimetric bifluidic sweat device with two synchronous channels to quantify sweat rate and biomarkers in real-time, even during uncertain sweat activities. In the proposed bifluidic-distance metric approach, with one channel to measure sweat rate and quantify collected sweat volume, the other channel can provide an accurate analysis of the biomarkers based on the collected sweat volume. The closed channel design also reduces evaporation and resists contamination from the external environment. The feasibility of the device is highlighted in a proof-of-the-concept demonstration to analyze sweat chloride for evaluating hydration status and sweat glucose for assessing glucose levels. The low-cost yet highly accurate device provides opportunities for clinical sweat analysis and disease screening in remote and low-resource settings. The developed device platform can be facilely adapted for the other biomarkers when corresponding colorimetric reagents are exploited.


Assuntos
Pele , Suor , Suor/química , Pele/química , Biomarcadores/análise , Dispositivos Lab-On-A-Chip , Glucose/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA