Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 10(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35740241

RESUMO

The chemical exchange saturation transfer (CEST) signal at -1.6 ppm is attributed to the choline methyl on phosphatidylcholines and results from the relayed nuclear Overhauser effect (rNOE), that is, rNOE(-1.6). The formation of rNOE(-1.6) involving the cholesterol hydroxyl is shown in liposome models. We aimed to confirm the correlation between cholesterol content and rNOE(-1.6) in cell cultures, tissues, and animals. C57BL/6 mice (N = 9) bearing the C6 glioma tumor were imaged in a 7 T MRI scanner, and their rNOE(-1.6) images were cross-validated through cholesterol staining with filipin. Cholesterol quantification was obtained using an 18.8-T NMR spectrometer from the lipid extracts of the brain tissues from another group of mice (N = 3). The cholesterol content in the cultured cells was manipulated using methyl-ß-cyclodextrin and a complex of cholesterol and methyl-ß-cyclodextrin. The rNOE(-1.6) of the cell homogenates and their cholesterol levels were measured using a 9.4-T NMR spectrometer. The rNOE(-1.6) signal is hypointense in the C6 tumors of mice, which matches the filipin staining results, suggesting that their tumor region is cholesterol deficient. The tissue extracts also indicate less cholesterol and phosphatidylcholine contents in tumors than in normal brain tissues. The amplitude of rNOE(-1.6) is positively correlated with the cholesterol concentration in the cholesterol-manipulated cell cultures. Our results indicate that the cholesterol dependence of rNOE(-1.6) occurs in cell cultures and solid tumors of C6 glioma. Furthermore, when the concentration of phosphatidylcholine is carefully considered, rNOE(-1.6) can be developed as a cholesterol-weighted imaging technique.

2.
Chin J Integr Med ; 28(7): 603-611, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35391592

RESUMO

OBJECTIVE: To investigate the protective effects of Schisandra chinensis oil (SCEO) against aristolochic acid I (AA I)-induced nephrotoxicity in vivo and in vitro and elucidate the underlying mechanism. METHODS: C57BL/6 mice were randomly divided into 5 groups according to a random number table, including control group, AA I group, and AA I +SCEO (0.25, 0.5 and 1 g/kg) groups (n=5 per group). Pretreatment with SCEO was done for 2 days by oral administration, while the control and AA I groups were treated with sodium carboxymethyl cellulose. Mice of all groups except for the control group were injected intraperitoneally with AA I (5 mg/kg) from day 3 until day 7. Histopathological examination and apoptosis of kidney tissue were observed by hematoxylin and eosin and TdT-mediated dUTP nick-end labeling (TUNEL) staining, respectively. The levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and serum creatinine (SCr), as well as renal malondialdehyde (MDA), glutathione, r-glutamyl cysteingl+glycine (GSH), and superoxide dismutase (SOD) were analyzed using enzyme-linked immunosorbent assay (ELISA). Expressions of hepatic cytochrome P450 1A1 (CYP1A1), CYP1A2, and nad(p)hquinonedehydrogenase1 (NQO1) were analyzed using ELISA, quantitative real-time polymerase chain reaction (qPCR) and Western blot, respectively. In vitro, SCEO (40 µ g/mL) was added 12 h before treatment with AA I (40 µ mol/mL for 48 h) in human renal proximal tubule cell line (HK-2), then apoptosis and reactive oxygen species (ROS) were analyzed by flow cytometry. RESULTS: SCEO 0.5 and 1 g/kg ameliorated histopathological changes and TUNEL+ staining in the kidney tissues of mice with AA I-induced nephrotoxicity, and reduced serum levels of ALT, AST, BUN and SCr (P<0.01 or P<0.05). SCEO 0.5 and 1 g/kg alleviated the ROS generation in kidney, containing MDA, GSH and SOD (P<0.01 or P<0.05). SCEO 1 g/kg increased the expressions of CYP1A1 and CYP1A2 and decreased NQO1 level in the liver tissues (P<0.01 or P<0.05). Besides, in vitro studies also demonstrated that SCEO 40 µ g/mL inhibited apoptosis and ROS generation (P<0.05 or P<0.01). CONCLUSIONS: SCEO can alleviate AA I-induced kidney damage both in vivo and in vitro. The protective mechanism may be closely related to the regulation of metabolic enzymes, thereby inhibiting apoptosis and ROS production.


Assuntos
Ácidos Aristolóquicos , Nefropatias , Óleos de Plantas , Substâncias Protetoras , Schisandra , Animais , Apoptose , Ácidos Aristolóquicos/toxicidade , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Glutationa/metabolismo , Rim/efeitos dos fármacos , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Substâncias Protetoras/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA