Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurodev Disord ; 13(1): 10, 2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743598

RESUMO

BACKGROUND: Motor deficits such as abnormal gait are an underappreciated yet characteristic phenotype of many neurodevelopmental disorders (NDDs), including Williams Syndrome (WS) and Neurofibromatosis Type 1 (NF1). Compared to cognitive phenotypes, gait phenotypes are readily and comparably assessed in both humans and model organisms and are controlled by well-defined CNS circuits. Discovery of a common gait phenotype between NDDs might suggest shared cellular and molecular deficits and highlight simple outcome variables to potentially quantify longitudinal treatment efficacy in NDDs. METHODS: We characterized gait using the DigiGait assay in two different murine NDD models: the complete deletion (CD) mouse, which models hemizygous loss of the complete WS locus, and the Nf1+/R681X mouse, which models a NF1 patient-derived heterozygous germline NF1 mutation. Longitudinal data were collected across four developmental time points (postnatal days 21-30) and one early adulthood time point. RESULTS: Compared to wildtype littermate controls, both models displayed markedly similar spatial, temporal, and postural gait abnormalities during development. Developing CD mice also displayed significant decreases in variability metrics. Multiple gait abnormalities observed across development in the Nf1+/R681X mice persisted into early adulthood, including increased stride length and decreased stride frequency, while developmental abnormalities in the CD model largely resolved by adulthood. CONCLUSIONS: These findings suggest that the subcomponents of gait affected in NDDs show overlap between disorders as well as some disorder-specific features, which may change over the course of development. Our incorporation of spatial, temporal, and postural gait measures also provides a template for gait characterization in other NDD models and a platform to examining circuits or longitudinal therapeutics.


Assuntos
Transtornos do Neurodesenvolvimento , Animais , Modelos Animais de Doenças , Marcha , Humanos , Camundongos , Transtornos do Neurodesenvolvimento/genética
2.
Biol Psychiatry ; 81(3): 252-264, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27113499

RESUMO

BACKGROUND: Studies in psychiatric genetics have identified >100 loci associated with disease risk, yet many of these loci are distant from protein coding genes. Recent characterization of the transcriptional landscape of cell lines and whole tissues has suggested widespread transcription in both coding and noncoding regions of the genome, including differential expression from loci that produce regulatory noncoding RNAs that function within the nucleus; however, the nuclear transcriptome of specific cell types in the brain has not been previously investigated. METHODS: We defined the nuclear transcriptional landscape of the three major cellular divisions of the nervous system using flow sorting of genetically labeled nuclei from bacTRAP mouse lines. Next, we characterized the unique expression of coding, noncoding, and intergenic RNAs in the mature mouse brain with RNA-Seq and validation with independent methods. RESULTS: We found diverse expression across the cell types of all classes of RNAs, including long noncoding RNAs, several of which were confirmed as highly enriched in the nuclei of specific cell types using anatomic methods. We also discovered several examples of cell type-specific expression of tandem gene fusions, and we report the first cell type-specific expression of circular RNAs-a neuron-specific and nuclear-enriched RNA arising from the gene Hnrnpu. CONCLUSIONS: These data provide an important resource for studies evaluating the function of various noncoding RNAs in the brain, including noncoding RNAs that may play a role in psychiatric disease.


Assuntos
Encéfalo/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , RNA Nuclear/metabolismo , Transcriptoma , Animais , Feminino , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Masculino , Camundongos , Oligodendroglia/metabolismo , RNA Longo não Codificante/metabolismo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA