Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 5246, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748570

RESUMO

Semiconductur nano- and micropillars represent a promising platform for hybrid nanodevices. Their ability to couple to a broad variety of nanomechanical, acoustic, charge, spin, excitonic, polaritonic, or electromagnetic excitations is utilized in fields as diverse as force sensing or optoelectronics. In order to fully exploit the potential of these versatile systems e.g. for metamaterials, synchronization or topologically protected devices an intrinsic coupling mechanism between individual pillars needs to be established. This can be accomplished by taking advantage of the strain field induced by the flexural modes of the pillars. Here, we demonstrate strain-induced, strong coupling between two adjacent nanomechanical pillar resonators. Both mode hybridization and the formation of an avoided level crossing in the response of the nanopillar pair are experimentally observed. The described coupling mechanism is readily scalable, enabling hybrid nanomechanical resonator networks for the investigation of a broad range of collective dynamical phenomena.

2.
Nano Lett ; 19(4): 2207-2214, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30427688

RESUMO

Living cells interact with their immediate environment by exerting mechanical forces, which regulate important cell functions. Elucidation of such force patterns yields deep insights into the physics of life. Here we present a top-down nanostructured, ultraflexible nanowire array biosensor capable of probing cell-induced forces. Its universal building block, an inverted conical semiconductor nanowire, greatly enhances both the functionality and the sensitivity of the device. In contrast to existing cellular force sensing architectures, microscopy is performed on the nanowire heads while cells deflecting the nanowires are confined within the array. This separation between the optical path and the cells under investigation excludes optical distortions caused by cell-induced refraction, which can give rise to feigned displacements on the 100 nm scale. The undistorted nanowire displacements are converted into cellular forces via the nanowire spring constant. The resulting distortion-free cellular force transducer realizes a high-resolution and label-free biosenor based on optical microscopy. Its performance is demonstrated in a proof-of-principle experiment with living Dictyostelium discoideum cells migrating through the nanowire array. Cell-induced forces are probed with a resolution of 50 piconewton, while the most flexible nanowires promise to enter the 100 femtonewton realm.


Assuntos
Técnicas Biossensoriais , Rastreamento de Células/métodos , Nanoestruturas/química , Nanofios/química , Microscopia/métodos , Nanotecnologia/métodos , Óptica e Fotônica/tendências , Semicondutores , Transdutores
3.
Nat Commun ; 3: 728, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22395619

RESUMO

Following recent insights into energy storage and loss mechanisms in nanoelectromechanical systems (NEMS), nanomechanical resonators with increasingly high quality factors are possible. Consequently, efficient, non-dissipative transduction schemes are required to avoid the dominating influence of coupling losses. Here we present an integrated NEMS transducer based on a microwave cavity dielectrically coupled to an array of doubly clamped pre-stressed silicon nitride beam resonators. This cavity-enhanced detection scheme allows resolving of the resonators' Brownian motion at room temperature while preserving their high mechanical quality factor of 290,000 at 6.6 MHz. Furthermore, our approach constitutes an 'opto'-mechanical system in which backaction effects of the microwave field are employed to alter the effective damping of the resonators. In particular, cavity-pumped self-oscillation yields a linewidth of only 5 Hz. Thereby, an adjustement-free, all-integrated and self-driven nanoelectromechanical resonator array interfaced by just two microwave connectors is realised, which is potentially useful for applications in sensing and signal processing.

4.
Nature ; 454(7202): 310-4, 2008 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-18633412

RESUMO

Spin systems and harmonic oscillators comprise two archetypes in quantum mechanics. The spin-1/2 system, with two quantum energy levels, is essentially the most nonlinear system found in nature, whereas the harmonic oscillator represents the most linear, with an infinite number of evenly spaced quantum levels. A significant difference between these systems is that a two-level spin can be prepared in an arbitrary quantum state using classical excitations, whereas classical excitations applied to an oscillator generate a coherent state, nearly indistinguishable from a classical state. Quantum behaviour in an oscillator is most obvious in Fock states, which are states with specific numbers of energy quanta, but such states are hard to create. Here we demonstrate the controlled generation of multi-photon Fock states in a solid-state system. We use a superconducting phase qubit, which is a close approximation to a two-level spin system, coupled to a microwave resonator, which acts as a harmonic oscillator, to prepare and analyse pure Fock states with up to six photons. We contrast the Fock states with coherent states generated using classical pulses applied directly to the resonator.

5.
Phys Rev Lett ; 97(5): 050502, 2006 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-17026085

RESUMO

We introduce a new design concept for superconducting phase quantum bits (qubits) in which we explicitly separate the capacitive element from the Josephson tunnel junction for improved qubit performance. The number of two-level systems that couple to the qubit is thereby reduced by an order of magnitude and the measurement fidelity improves to 90%. This improved design enables the first demonstration of quantum state tomography with superconducting qubits using single-shot measurements.

6.
Science ; 313(5792): 1423-5, 2006 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16960003

RESUMO

Demonstration of quantum entanglement, a key resource in quantum computation arising from a nonclassical correlation of states, requires complete measurement of all states in varying bases. By using simultaneous measurement and state tomography, we demonstrated entanglement between two solid-state qubits. Single qubit operations and capacitive coupling between two super-conducting phase qubits were used to generate a Bell-type state. Full two-qubit tomography yielded a density matrix showing an entangled state with fidelity up to 87%. Our results demonstrate a high degree of unitary control of the system, indicating that larger implementations are within reach.

7.
Science ; 312(5779): 1498-500, 2006 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16763142

RESUMO

Measurement is one of the fundamental building blocks of quantum-information processing systems. Partial measurement, where full wavefunction collapse is not the only outcome, provides a detailed test of the measurement process. We introduce quantum-state tomography in a superconducting qubit that exhibits high-fidelity single-shot measurement. For the two probabilistic outcomes of partial measurement, we find either a full collapse or a coherent yet nonunitary evolution of the state. This latter behavior explicitly confirms modern quantum-measurement theory and may prove important for error-correction algorithms in quantum computation.

8.
Phys Rev Lett ; 92(4): 046804, 2004 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-14995394

RESUMO

An electron-phonon cavity consisting of a quantum dot embedded in a freestanding GaAs/AlGaAs membrane is characterized using Coulomb blockade measurements at low temperatures. We find a complete suppression of single electron tunneling around zero bias leading to the formation of an energy gap in the transport spectrum. The observed effect is induced by the excitation of a localized phonon mode confined in the cavity. This phonon blockade of transport is lifted at discrete magnetic fields where higher electronic states with nonzero angular momentum are brought into resonance with the phonon energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA