Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol Lett ; 11(3): 201-207, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38828437

RESUMO

Climate change has contributed to increased frequency and intensity of wildfire. Studying its acute effects is limited due to unpredictable nature of wildfire occurrence, which necessitates readily deployable techniques to collect biospecimens. To identify biomarkers of wildfire's acute effects, we conducted this exploratory study in eight healthy campers (four men and four women) who self-collected nasal fluid, urine, saliva, and skin wipes at different time points before, during, and after 4-hour exposure to wood smoke in a camping event. Concentrations of black carbon in the air and polycyclic aromatic hydrocarbons in participants' silicone wristbands were significantly elevated during the exposure session. Among 30 arachidonic acid metabolites measured, lipoxygenase metabolites were more abundant in nasal fluid and saliva, whereas cyclooxygenase and non-enzymatic metabolites were more abundant in urine. We observed drastic increases, at 8 hours following the exposure, in urinary levels of PGE2 (398%) and 15-keto-PGF2α (191%) (FDR<10%), with greater increases in men (FDR < 0.01%) than in women. No significant changes were observed for other metabolites in urine or the other biospecimens. Our results suggest urinary PGE2 and 15-keto-PGF2α as promising biomarkers reflecting pathophysiologic (likely sex-dependent) changes induced by short-term exposure to wildfire.

2.
bioRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37425766

RESUMO

Dopamine release in striatal circuits, including the nucleus accumbens (NAc), tracks separable features of reward such as motivation and reinforcement. However, the cellular and circuit mechanisms by which dopamine receptors transform dopamine release into distinct constructs of reward remain unclear. Here, we show that dopamine D3 receptor (D3R) signaling in the NAc drives motivated behavior by regulating local NAc microcircuits. Furthermore, D3Rs co-express with dopamine D1 receptors (D1Rs), which regulate reinforcement, but not motivation. Paralleling dissociable roles in reward function, we report non-overlapping physiological actions of D3R and D1R signaling in NAc neurons. Our results establish a novel cellular framework wherein dopamine signaling within the same NAc cell type is physiologically compartmentalized via actions on distinct dopamine receptors. This structural and functional organization provides neurons in a limbic circuit with the unique ability to orchestrate dissociable aspects of reward-related behaviors that are relevant to the etiology of neuropsychiatric disorders.

3.
Sci Adv ; 8(23): eabn3567, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35687680

RESUMO

Exposure to irregular lighting schedules leads to deficits in affective behaviors. The retino-recipient perihabenular nucleus (PHb) of the dorsal thalamus has been shown to mediate these effects in mice. However, the mechanisms of how light information is processed within the PHb remains unknown. Here, we show that the PHb contains a distinct cluster of GABAergic neurons that receive direct retinal input. These neurons are part of a larger inhibitory network composed of the thalamic reticular nucleus and zona incerta, known to modulate thalamocortical communication. In addition, PHbGABA neurons locally modulate excitatory-relay neurons, which project to limbic centers. Chronic exposure to irregular light-dark cycles alters photo-responsiveness and synaptic output of PHbGABA neurons, disrupting daily oscillations of genes associated with inhibitory and excitatory PHb signaling. Consequently, selective and chronic PHbGABA manipulation results in mood alterations that mimic those caused by irregular light exposure. Together, light-mediated disruption of PHb inhibitory networks underlies mood deficits.

4.
Nat Commun ; 12(1): 5115, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433830

RESUMO

Light regulates daily sleep rhythms by a neural circuit that connects intrinsically photosensitive retinal ganglion cells (ipRGCs) to the circadian pacemaker, the suprachiasmatic nucleus. Light, however, also acutely affects sleep in a circadian-independent manner. The neural circuits involving the acute effect of light on sleep remain unknown. Here we uncovered a neural circuit that drives this acute light response, independent of the suprachiasmatic nucleus, but still through ipRGCs. We show that ipRGCs substantially innervate the preoptic area (POA) to mediate the acute light effect on sleep in mice. Consistently, activation of either the POA projecting ipRGCs or the light-responsive POA neurons increased non-rapid eye movement (NREM) sleep without influencing REM sleep. In addition, inhibition of the light-responsive POA neurons blocked the acute light effects on NREM sleep. The predominant light-responsive POA neurons that receive ipRGC input belong to the corticotropin-releasing hormone subpopulation. Remarkably, the light-responsive POA neurons are inhibitory and project to well-known wakefulness-promoting brain regions, such as the tuberomammillary nucleus and the lateral hypothalamus. Therefore, activation of the ipRGC-POA circuit inhibits arousal brain regions to drive light-induced NREM sleep. Our findings reveal a functional retina-brain circuit that is both necessary and sufficient for the acute effect of light on sleep.


Assuntos
Plasticidade Neuronal/efeitos da radiação , Células Ganglionares da Retina/efeitos da radiação , Sono/efeitos da radiação , Núcleo Supraquiasmático/fisiologia , Animais , Luz , Masculino , Camundongos , Células Fotorreceptoras/efeitos da radiação , Área Pré-Óptica/fisiologia , Área Pré-Óptica/efeitos da radiação , Núcleo Supraquiasmático/efeitos da radiação , Vigília/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA