Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 100(3): 850-61, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22278990

RESUMO

Methyl methacrylate used in bone cements has drawbacks of toxicity, high exotherm, and considerable shrinkage. A new resin, based on silorane/oxirane chemistry, has been shown to have little toxicity, low exotherm, and low shrinkage. We hypothesized that silorane-based resins may also be useful as components of bone cements as well as other bone applications and began testing on bone cell function in vitro and in vivo. MLO-A5, late osteoblast cells, were exposed to polymerized silorane (SilMix) resin (and a standard polymerized bisGMA/TEGDMA methacrylate (BT) resin and compared to culture wells without resins as control. A significant cytotoxic effect was observed with the BT resin resulting in no cell growth, whereas in contrast, SilMix resin had no toxic effects on MLO-A5 cell proliferation, differentiation, nor mineralization. The cells cultured with SilMix produced increasing amounts of alkaline phosphatase (1.8-fold) compared to control cultures. Compared to control cultures, an actual enhancement of mineralization was observed in the silorane resin-containing cultures at days 10 and 11 as determined by von Kossa (1.8-2.0 fold increase) and Alizarin red staining (1.8-fold increase). A normal bone calcium/phosphate atomic ratio was observed by elemental analysis along with normal collagen formation. When used in vivo to stabilize osteotomies, no inflammatory response was observed, and the bone continued to heal. In conclusion, the silorane resin, SilMix, was shown to not only be non cytototoxic, but actually supported bone cell function. Therefore, this resin has significant potential for the development of a nontoxic bone cement or bone stabilizer.


Assuntos
Cimentos Ósseos/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Adesivos Dentinários/farmacologia , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Animais , Linhagem Celular , Colágeno/biossíntese , Camundongos , Osteoblastos/citologia , Resinas de Silorano
2.
J Biomed Mater Res B Appl Biomater ; 100(1): 163-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22102398

RESUMO

We have synthesized a filler-reinforced silorane composite that has potential applications in orthopaedic surgery, such as for a bone stabilizer. The purpose of the present work was to develop a method for estimating four properties of this material; namely, maximum exotherm temperature, flexural strength, flexural modulus, and fracture toughness. The method involved the use of mixture design-of-experiments and regression analysis of results obtained using 23 formulations of the composite. We validated the estimation method by showing that, for each of four composite formulations that were not included in the method development, the value of each of the aforementioned properties was not significantly different from that obtained experimentally. Our estimation method has the potential for use in the development of a wide range of orthopaedic materials.


Assuntos
Substitutos Ósseos/química , Adesivos Dentinários/química , Teste de Materiais/métodos , Substitutos Ósseos/síntese química , Adesivos Dentinários/síntese química , Ortopedia , Fotoquímica/métodos , Resinas de Silorano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA