Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Rep ; 42(11): 1721-1732, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37594528

RESUMO

KEY MESSAGE: Ethylene formation via methionine reacting with trichloroisocyanuric acid under FeSO4 condition in a non-enzymatical manner provides one economically and efficiently novel ethylene-forming approach in planta. Rice seed germination can be stimulated by trichloroisocyanuric acid (TCICA). However, the molecular basis of TCICA in stimulating rice seed germination remains unclear. In this study, the molecular mechanism on how TCICA stimulated rice seed germination was examined via comparative transcriptome. Results showed that clustering of transcripts of TCICA-treated seeds, water-treated seeds, and dry seeds was clearly separated. Twenty-two and three hundred differentially expressed genes were identified as TCICA treatment responsive genes and TCICA treatment potentially responsive genes, respectively. Two and one TCICA treatment responsive genes were involved in ethylene signal transduction and iron homeostasis, respectively. Seventeen of the three hundred TCICA treatment potentially responsive genes were significantly annotated to iron ion binding. Meanwhile, level of methionine (ethylene precursor) showed a 73.9% decrease in response to TCICA treatment. Ethylene was then proved to produce via methionine reacting with TCICA under FeSO4 condition in vitro. Revealing ethylene formation by TCICA not only may bring novel insights into crosstalk between ethylene and other phytohormones during rice seed germination, but also may provide one economically and efficiently novel approach to producing ethylene in planta independently of the ethylene biosynthesis in plants and thereby may broaden its applications in investigational and applied purposes.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Germinação/genética , Perfilação da Expressão Gênica , Etilenos/farmacologia , Etilenos/metabolismo , Sementes/metabolismo , Transcriptoma/genética , Metionina/genética , Metionina/metabolismo , Ferro/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/metabolismo
2.
Pest Manag Sci ; 75(10): 2566-2574, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31095858

RESUMO

Rice planthoppers are the most widespread and destructive pest of rice. Planthopper control depends greatly on the understanding of molecular players involved in resistance to planthoppers. This paper summarizes the recent progress in the understanding of some molecular players involved in resistance to planthoppers and the mechanisms involved. Recent researches showed that host-plant resistance is the most promising sustainable approach for controlling planthoppers. Planthopper-resistant varieties with a host-plant resistance gene have been released for rice products. Integrated planthopper management is a proposed strategy to prolong the durability of host-plant resistance. Bacillus spp. and their gene products or insect pathogenic fungi have great potential for application in the biological control of planthoppers. Enhancement of the activity of the natural enemies of planthoppers would be more cost-effective and environmentally friendly. Various molecular processes regulate rice-planthopper interactions. Rice encounters planthopper attacks via transcription factors, secondary metabolites, and signaling networks in which phytohormones have central roles. Maintenance of cell wall integrity and lignification act as physical barriers. Indirect defenses of rice are regulated via chemical elicitors, honeydew-associated elicitor, amendment with silicon and biochar, and salivary protein of BPH as elicitor or effector. Further research directions on planthopper control and rice defense against planthoppers are also put forward. © 2019 Society of Chemical Industry.


Assuntos
Antibiose , Hemípteros/fisiologia , Controle de Insetos/métodos , Oryza/fisiologia , Controle Biológico de Vetores/métodos , Animais , Cadeia Alimentar , Herbivoria , Melhoramento Vegetal
3.
Plant Cell Rep ; 35(8): 1559-72, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26979747

RESUMO

KEY MESSAGE: This article presents a comprehensive review on the genetic and biochemical mechanisms governing rice-planthopper interactions, aiming to contribute substantial planthopper control and facilitate breeding for resistance to planthoppers in rice. The rice planthopper is the most destructive pest of rice and a substantial threat to rice production. The brown planthopper (BPH), white-backed planthopper (WBPH) and small brown planthopper (SBPH) are three species of delphacid planthoppers and important piercing-sucking pests of rice. Host-plant resistance has been recognized as the most practical, economical and environmentally friendly strategy to control planthoppers. Until now, at least 30, 14 and 34 major genes/quantitative trait loci for resistance to BPH, WBPH and SBPH have been identified, respectively. Recent inheritance and molecular mapping of gene analysis showed that some planthopper-resistance genes in rice derived from different donors aggregate in clusters, while resistance to these three species of planthoppers in a single donor is governed not by any one dominant gene but by multiple genes. Notably, Bph14, Bph26, Bph3 and Bph29 were successfully identified as BPH-resistance genes in rice. Biological and chemical studies on the feeding of planthoppers indicate that rice plants have acquired various forms of defence against planthoppers. Between the rice-planthopper interactions, rice plants defend against planthoppers through activation the salicylic acid-dependent systemic acquired resistance but not jasmonate-dependent hormone response pathways. Transgenic rice for the planthopper-resistance mechanism shows that jasmonate and its metabolites function diversely in rice's resistance to planthopper. Understanding the genetic and biochemical mechanisms underlying resistance in rice will contribute to the substantial control of such pests and facilitate breeding for rice's resistance to planthopper more efficiently.


Assuntos
Resistência à Doença/genética , Hemípteros/fisiologia , Oryza/genética , Oryza/parasitologia , Doenças das Plantas/parasitologia , Animais , Metaboloma , Reguladores de Crescimento de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA