RESUMO
Introduction: The production of high-quality food for the growing world population on the one hand and the reduction of chemical-synthetic pesticides on the other hand represents a major challenge for agriculture worldwide. The effectiveness of a combination of microbial and non-microbial biostimulants (BSs) with various nitrogen (N) forms in pathogen defense is discussed as a promising, but still poorly understood bio-based alternative for crop protection. Methods: For this reason, nitrate and stabilized ammonium fertilizer both combined with a consortium of Pseudomonas brassicacearum, Bacillus amyloliquefaciens, and Trichoderma harzianum as soil treatment or with a mixture of seaweed extract (Ascophyllum nodosum) together with chitosan-amended micronutrient fertilizer as foliar spray application were compared under controlled greenhouse conditions. Furthermore, a combination of microbial and different non-microbial BSs (seaweed extracts + chitosan) and micronutrients with nitrate or with stabilized ammonium fertilizer was tested under field conditions to improve nutrient availability, promote plant growth, and suppress Zymoseptoria tritici (Zt) in winter wheat. Results and discussion: While plant-protective effects against Zt by the microbial consortium application could be observed particularly under ammonium fertilization, the application of seaweed extract-chitosan mixture expressed plant defense against Zt more strongly under nitrate fertilization. In the field trial, the combination of microbial consortium with the seaweed extract-chitosan mixture together with micronutrients zinc (Zn) and manganese (Mn) showed positive effects against Zt under ammonium fertilization, associated with increased levels of defense metabolites. Furthermore, the additional input of Zn and copper (Cu) from the chitosan application improved the micronutrient status by minimizing the risk of Zn and Cu deficiency under controlled and field conditions. The use of BSs and the inoculation of Zt did not show any effects on plant growth and yield neither under controlled greenhouse conditions nor in the field. Summarized, microbial and non-microbial BSs separately applied or even combined together as one treatment did not influence plant growth or yield but made a positive contribution to an N form-dependent promotion of pathogen defense.
RESUMO
Multifunctional materials have been described to meet the diverse requirements of implant materials for femoral components of uncemented total knee replacements. These materials aim to combine the high wear and corrosion resistance of oxide ceramics at the joint surfaces with the osteogenic potential of titanium alloys at the bone-implant interface. Our objective was to evaluate the biomechanical performance of hybrid material-based femoral components regarding mechanical stress within the implant during cementless implantation and stress shielding (evaluated by strain energy density) of the periprosthetic bone during two-legged squat motion using finite element modeling. The hybrid materials consisted of alumina-toughened zirconia (ATZ) ceramic joined with additively manufactured Ti-6Al-4V or Ti-35Nb-6Ta alloys. The titanium component was modeled with or without an open porous surface structure. Monolithic femoral components of ATZ ceramic or Co-28Cr-6Mo alloy were used as reference. The elasticity of the open porous surface structure was determined within experimental compression tests and was significantly higher for Ti-35Nb-6Ta compared to Ti-6Al-4V (5.2 ± 0.2 GPa vs. 8.8 ± 0.8 GPa, p < 0.001). During implantation, the maximum stress within the ATZ femoral component decreased from 1568.9 MPa (monolithic ATZ) to 367.6 MPa (Ti-6Al-4V/ATZ), 560.9 MPa (Ti-6Al-4V/ATZ with an open porous surface), 474.9 MPa (Ti-35Nb-6Ta/ATZ), and 648.4 MPa (Ti-35Nb-6Ta/ATZ with an open porous surface). The strain energy density increased at higher flexion angles for all models during the squat movement. At â¼90° knee flexion, the strain energy density in the anterior region of the distal femur increased by 25.7 % (Ti-6Al-4V/ATZ), 70.3 % (Ti-6Al-4V/ATZ with an open porous surface), 43.7 % (Ti-35Nb-6Ta/ATZ), and 82.5% (Ti-35Nb-6Ta/ATZ with an open porous surface) compared to monolithic ATZ. Thus, the hybrid material-based femoral component decreases the intraoperative fracture risk of the ATZ part and considerably reduces the risk of stress shielding of the periprosthetic bone.
Assuntos
Artroplastia do Joelho , Fêmur , Análise de Elementos Finitos , Teste de Materiais , Fêmur/cirurgia , Fenômenos Biomecânicos , Estresse Mecânico , Fenômenos Mecânicos , Porosidade , Titânio/química , Ligas/química , Zircônio/químicaRESUMO
Biostimulants (Bio-effectors, BEs) comprise plant growth-promoting microorganisms and active natural substances that promote plant nutrient-acquisition, stress resilience, growth, crop quality and yield. Unfortunately, the effectiveness of BEs, particularly under field conditions, appears highly variable and poorly quantified. Using random model meta-analyses tools, we summarize the effects of 107 BE treatments on the performance of major crops, mainly conducted within the EU-funded project BIOFECTOR with a focus on phosphorus (P) nutrition, over five years. Our analyses comprised 94 controlled pot and 47 field experiments under different geoclimatic conditions, with variable stress levels across European countries and Israel. The results show an average growth/yield increase by 9.3% (n=945), with substantial differences between crops (tomato > maize > wheat) and growth conditions (controlled nursery + field (Seed germination and nursery under controlled conditions and young plants transplanted to the field) > controlled > field). Average crop growth responses were independent of BE type, P fertilizer type, soil pH and plant-available soil P (water-P, Olsen-P or Calcium acetate lactate-P). BE effectiveness profited from manure and other organic fertilizers, increasing soil pH and presence of abiotic stresses (cold, drought/heat or salinity). Systematic meta-studies based on published literature commonly face the inherent problem of publication bias where the most suspected form is the selective publication of statistically significant results. In this meta-analysis, however, the results obtained from all experiments within the project are included. Therefore, it is free of publication bias. In contrast to reviews of published literature, our unique study design is based on a common standardized protocol which applies to all experiments conducted within the project to reduce sources of variability. Based on data of crop growth, yield and P acquisition, we conclude that application of BEs can save fertilizer resources in the future, but the efficiency of BE application depends on cropping systems and environments.
RESUMO
Aseptic implant loosening after a total joint replacement is partially influenced by material-specific factors when cobalt-chromium alloys are used, including osteolysis induced by wear and corrosion products and stress shielding. Here, we aim to characterize a hybrid material consisting of alumina-toughened zirconia (ATZ) ceramics and additively manufactured Ti-35Nb-6Ta (TiNbTa) alloys, which are joined by a glass solder. The structure of the joint, the static and fatigue shear strength, the influence of accelerated aging, and the cytotoxicity with human osteoblasts are characterized. Furthermore, the biomechanical properties of the functional demonstrators of a femoral component for total knee replacements are evaluated. The TiNbTa-ATZ specimens showed a homogenous joint with statistically distributed micro-pores and a slight accumulation of Al-rich compounds at the glass solder-TiNbTa interface. Shear strengths of 26.4 ± 4.2 MPa and 38.2 ± 14.4 MPa were achieved for the TiNbTa-ATZ and Ti-ATZ specimens, respectively, and they were not significantly affected by the titanium material used, nor by accelerated aging (p = 0.07). All of the specimens survived 107 cycles of shear loading to 10 MPa. Furthermore, the TiNbTa-ATZ did not impair the proliferation and metabolic activity of the human osteoblasts. Functional demonstrators made of TiNbTa-ATZ provided a maximum bearable extension-flexion moment of 40.7 ± 2.2 Nm. The biomechanical and biological properties of TiNbTa-ATZ demonstrate potential applications for endoprosthetic implants.
RESUMO
The additive manufacturing of titanium-niobium-tantalum alloys with nominal chemical compositions Ti-xNb-6Ta (x = 20, 27, 35) by means of laser beam powder bed fusion is reported, and their potential as implant materials is elaborated by mechanical and biological characterization. The properties of dense specimens manufactured in different build orientations and of open porous Ti-20Nb-6Ta specimens are evaluated. Compression tests indicate that strength and elasticity are influenced by the chemical composition and build orientation. The minimum elasticity is always observed in the 90° orientation. It is lowest for Ti-20Nb-6Ta (43.2 ± 2.7 GPa) and can be further reduced to 8.1 ± 1.0 GPa for open porous specimens (p < 0.001). Furthermore, human osteoblasts are cultivated for 7 and 14 days on as-printed specimens and their biological response is compared to that of Ti-6Al-4V. Build orientation and cultivation time significantly affect the gene expression profile of osteogenic differentiation markers. Incomplete cell spreading is observed in specimens manufactured in 0° build orientation, whereas widely stretched cells are observed in 90° build orientation, i.e., parallel to the build direction. Compared to Ti-6Al-4V, Ti-Nb-Ta specimens promote improved osteogenesis and reduce the induction of inflammation. Accordingly, Ti-xNb-6Ta alloys have favorable mechanical and biological properties with great potential for application in orthopedic implants.
RESUMO
Green technologies, such as solar panels, foster the use of clean energy, yet often involve large-scale investments. Hence, adoption by retail consumers has been a key barrier. Here, we show that message framing can significantly increase customers' serious commitment to adopting solar panels by providing empirical evidence in the field from a large-scale randomized controlled trial with a nationwide online retailer in the Netherlands (N = 26,873 participants). We design four messages aimed at promoting the purchase behavior of solar panel installations. Our messages present outcomes for oneself or for the environment and highlight cost savings versus earnings (for oneself) or reducing emissions versus generating green electricity (for the environment). Across all messages, we observe a higher rate of customers committing to solar panels compared to the baseline. However, the framing in terms of financial savings for oneself was by far the most effective, resulting in a 40% higher level of commitment than the baseline and 30% higher than the average of the other three messages, which were not significantly different in effect from each other. Our results show that message framing is cost-efficient and scalable among retail consumers to promote large-scale investments in green technologies and thus clean energy.
RESUMO
Elimination of chemically synthesized pesticides, such as fungicides and nematicides, in agricultural products is a key to successful practice of the Vietnamese agriculture. We describe here the route for developing successful biostimulants based on members of the Bacillus subtilis species complex. A number of endospore-forming Gram-positive bacterial strains with antagonistic action against plant pathogens were isolated from Vietnamese crop plants. Based on their draft genome sequence, thirty of them were assigned to the Bacillus subtilis species complex. Most of them were assigned to the species Bacillus velezensis. Whole genome sequencing of strains BT2.4 and BP1.2A corroborated their close relatedness to B. velezensis FZB42, the model strain for Gram-positive plant growth-promoting bacteria. Genome mining revealed that at least 15 natural product biosynthesis gene clusters (BGCs) are well conserved in all B. velezensis strains. In total, 36 different BGCs were identified in the genomes of the strains representing B. velezensis, B. subtilis, Bacillus tequilensis, and Bacillus. altitudinis. In vitro and in vivo assays demonstrated the potential of the B. velezensis strains to enhance plant growth and to suppress phytopathogenic fungi and nematodes. Due to their promising potential to stimulate plant growth and to support plant health, the B. velezensis strains TL7 and S1 were selected as starting material for the development of novel biostimulants, and biocontrol agents efficient in protecting the important Vietnamese crop plants black pepper and coffee against phytopathogens. The results of the large-scale field trials performed in the Central Highlands in Vietnam corroborated that TL7 and S1 are efficient in stimulating plant growth and protecting plant health in large-scale applications. It was shown that treatment with both bioformulations resulted in prevention of the pathogenic pressure exerted by nematodes, fungi, and oomycetes, and increased harvest yield in coffee, and pepper.
RESUMO
In the European Union and worldwide there are a burgeoning markets for plant growth promoting microorganisms (PGPM) and other biological agents as soil improvers, bio-fertilizers, plant bio-stimulants, and biological control agents or bio-pesticides. Microbial agents have a major share in this development. The use of such products is often advertised with the promise of contributing to sustainable agricultural practices by increasing crop growth and yield and offering an alternative or substitute to decrease the dependency of agriculture on hazardeous agrochemicals. In contrast to registered microbial plant protection products, PGPM that are marketed in the EU as soil improvers or plant biostimulants, are not strictly required to have proven minimum efficacy levels under field conditions. Manufacturers only have to ensure that these products do not pose unacceptable risks to human, animal or plant health, safety or the environment. Uniform guidelines comparable to the EPPO - standards (European and Mediterranean Plant Protection Organisation) to test the efficacy in field trials are not available. This paper attempts to fill the gap. It proposes guidelines for PGPM field trial design and implementation, as well as recommendations for the type and scope of data collection and evaluation. Selected research papers from literature were evaluated to analyze, whether and to what extent the requirements are already met. The majority of the papers had a clear experimental design followed by proper data evaluation. Frequent deficiencies were the low number of tested environments and crop species, insufficient site and agronomic management description and missing data on soil humidity and temperature. Using the suggested standards is assumed to increase the expressive power of tested microbial products.
RESUMO
Low soil temperature in spring is a major constraint for the cultivation of tropical and subtropical crops in temperate climates, associated with inhibition of root growth and activity, affecting early growth and frequently plant performance and final yield. This study was initiated to investigate the physiological base of cold-protective effects induced by supplementation with silicon (Si), widely recommended as a stress-protective mineral nutrient. Maize was used as a cold-sensitive model plant, exposed to chilling stress and low root-zone temperature (RZT) during early growth in a lab to field approach. In a pot experiment, 2-weeks exposure of maize seedlings to low RZT of 12-14°C, induced leaf chlorosis and necrosis, inhibition of shoot and root growth and micronutrient limitation (particularly Zn and Mn). These phenotypes were mitigated by seed treatments with the respective micronutrients, but surprisingly, also by Si application. Both, silicon and micronutrient treatments were associated with increased activity of superoxide dismutase in shoot and roots (as a key enzyme for detoxification of reactive oxygen species, depending on Zn and Mn as cofactors), increased tissue concentrations of phenolics, proline, and antioxidants, but reduced levels of H2O2. These findings suggest that mitigation of oxidative stress is a major effect of Zn, Mn, and Si applied as cold stress protectants. In a soil-free culture system without external nutrient supply, Si significantly reduced large leaching losses of Zn and Mn from germinating seeds exposed to low-temperature stress. Silicon also increased the translocation of micronutrient seed reserves to the growing seedling, especially the Zn shoot translocation. In later stages of seedling development (10 days after sowing), cold stress reduced the root and shoot contents of important hormonal growth regulators (indole acetic acid, gibberellic acid, zeatin). Silicon restored the hormonal balances to a level comparable with non-stressed plants and stimulated the production of hormones involved in stress adaptation (abscisic, salicylic, and jasmonic acids). Beneficial effects of Si seed treatments on seedling establishment and the nutritional status of Zn and Mn were also measured for a field-grown silage maize, exposed to chilling stress by early sowing. This translated into increased final biomass yield.
RESUMO
The application of Ti-6Al-4V alloy or commercially pure titanium for additive manufacturing enables the fabrication of complex structural implants and patient-specific implant geometries. However, the difference in Young's modulus of α + ß-phase Ti alloys compared to the human bone promotes stress-shielding effects in the implant-bone interphase. The aim of the present study is the mechanical characterization of a new pre-alloyed ß-phase Ti-42Nb alloy for application in additive manufacturing. The present investigation focuses on the mechanical properties of SLM-printed Ti-42Nb alloy in tensile and compression tests. In addition, the raw Ti-42Nb powder, the microstructure of the specimens prior to and after compression tests, as well as the fracture occurring in tensile tests are characterized by means of the SEM/EDX analysis. The Ti-42Nb raw powder exhibits a dendrite-like Ti-structure, which is melted layer-by-layer into a microstructure with a very homogeneous distribution of Nb and Ti during the SLM process. Tensile tests display Young's modulus of 60.51 ± 3.92 GPa and an ultimate tensile strength of 683.17 ± 16.67 MPa, whereas, under a compressive load, a compressive strength of 1330.74 ± 53.45 MPa is observed. The combination of high mechanical strength and low elastic modulus makes Ti-42Nb an interesting material for orthopedic and dental implants. The spherical shape of the pre-alloyed material additionally allows for application in metal 3D printing, enabling the fabrication of patient-specific structural implants.
RESUMO
Nowadays, biomaterials can be used to maintain or replace several functions of the human body if necessary. Titanium and its alloys, i.e. Ti6Al4V are the most common materials (70 to 80%) used for structural orthopedic implants due to their unique combination of good mechanical properties, corrosion resistance and biocompatibility. Addition of ß-stabilizers, e.g. niobium, can improve the mechanical properties of such titanium alloys further, simultaneously offering excellent biocompatibility. In this in vitro study, human osteoblasts and fibroblasts were cultured on different niobium specimens (Nb Amperit, Nb Ampertec), Nb sheets and Ti-42Nb (sintered and 3D-printed by selective laser melting, SLM) and compared with forged Ti6Al4V specimens. Furthermore, human osteoblasts were incubated with particulates of the Nb and Ti-42Nb specimens in three concentrations over four and seven days to imitate influence of wear debris. Thereby, the specimens with the roughest surfaces, i.e. Ti-42Nb and Nb Ampertec, revealed excellent and similar results for both cell types concerning cell viability and collagen synthesis superior to forged Ti6Al4V. Examinations with particulate debris disclosed a dose-dependent influence of all powders with Nb Ampertec showing the highest decrease of cell viability and collagen synthesis. Furthermore, interleukin synthesis was only slightly increased for all powders. In summary, Nb Ampertec (sintered Nb) and Ti-42Nb materials seem to be promising alternatives for medical applications compared to common materials like forged or melted Ti6Al4V.
Assuntos
Ligas/farmacologia , Fibroblastos/citologia , Nióbio/farmacologia , Osteoblastos/citologia , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Interleucina-6/biossíntese , Interleucina-8/biossíntese , Microscopia Eletrônica de Varredura , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Tamanho da Partícula , Pós , Titânio/farmacologiaRESUMO
The title compound, C(2)H(10)BCl(2)N(2) (+)·Cl(-) or [BCl(2)(H(3)CNH(2))(2)](+)·Cl(-), is the first crystallographically characterized di(alkyl-amine)-BCl(2) (+) salt. The B atom is tetra-hedrally coordinated by two Cl and two methyl-amine N atoms. In the crystal structure, the cations and anions inter-act via N-Hâ¯Cl hydrogen bonds (mean Hâ¯Cl = 2.40â Å), resulting in a layered structure.