RESUMO
The sensory mechanisms used by baleen whales (Mysticeti) for locating ephemeral, dense prey patches in vast marine habitats are poorly understood. Baleen whales have a functional olfactory system with paired rather than single blowholes (nares), potentially enabling stereo-olfaction. Dimethyl sulfide (DMS) is an odorous gas emitted by phytoplankton in response to grazing by zooplankton. Some seabirds use DMS to locate prey, but this ability has not been demonstrated in whales. For 14 extant species of baleen whale, nares morphometrics (imagery from unoccupied aerial systems, UAS) was related to published trophic level indices using Bayesian phylogenetic mixed modelling. A significant negative relationship was found between nares width and whale trophic level (ß = -0.08, lower 95% CI = -0.13, upper 95% CI = -0.03), corresponding with a 39% increase in nares width from highest to lowest trophic level. Thus, species with nasal morphology best suited to stereo-olfaction are more zooplanktivorous. These findings provide evidence that some baleen whale species may be able to localize odorants e.g. DMS. Our results help direct future behavioural trials of olfaction in baleen whales, by highlighting the most appropriate species to study. This is a research priority, given the potential for DMS-mediated plastic ingestion by whales.
Assuntos
Olfato , Baleias , Animais , Filogenia , Teorema de Bayes , EcossistemaRESUMO
Fin whales Balaenoptera physalus were hunted unsustainably across the globe in the 19th and 20th centuries, leading to vast reductions in population size. Whaling catch records indicate the importance of the Southern Ocean for this species; approximately 730,000 fin whales were harvested during the 20th century in the Southern Hemisphere (SH) alone, 94% of which were at high latitudes. Genetic samples from contemporary whales can provide a window to past population size changes, but the challenges of sampling in remote Antarctic waters limit the availability of data. Here, we take advantage of historical samples in the form of bones and baleen available from ex-whaling stations and museums to assess the pre-whaling diversity of this once abundant species. We sequenced 27 historical mitogenomes and 50 historical mitochondrial control region sequences of fin whales to gain insight into the population structure and genetic diversity of Southern Hemisphere fin whales (SHFWs) before and after the whaling. Our data, both independently and when combined with mitogenomes from the literature, suggest SHFWs are highly diverse and may represent a single panmictic population that is genetically differentiated from Northern Hemisphere populations. These are the first historic mitogenomes available for SHFWs, providing a unique time series of genetic data for this species.
Assuntos
Baleia Comum , Animais , Baleia Comum/genética , Baleias/genética , Densidade Demográfica , Regiões AntárticasRESUMO
Although sei whales (Balaenoptera borealis) are distributed throughout the globe, their behaviour and vocal repertoire are poorly described. We used passive acoustic monitoring to describe the vocal behaviour of sei whales in the Falkland Islands, between December 2018 and April 2019. We isolated more than 2000 low-frequency calls for manual classification, of which 510 calls with high signal-to-noise ratio were quantitatively measured. Five categories of stereotyped call types in the 15-230 Hz range were described, some with multiple subcategories. These included some similar to previously described calls (e.g. downsweeps), but others that were novel in acoustic structure and frequency band. In the mid-frequency range, we documented a highly stereotyped, hierarchically structured and rhythmically repetitive song display. Songs were arranged in phrases with a structure composed of repetitive sub-phrases, and a diverse variety of sounds in the 1-5 kHz range. Singing commenced in late February, despite the presence of whales and calls since early December, and continued through April. These acoustic properties and behavioural characteristics indicate that this is likely a male breeding display similar to songs and singing of other balaenopterids. This is the first detailed description of a song display for sei whales, highlighting the importance of the Falkland Islands.
RESUMO
Despite their enormous size, whales make their living as voracious predators. To catch their much smaller, more maneuverable prey, they have developed several unique locomotor strategies that require high energetic input, high mechanical power output and a surprising degree of agility. To better understand how body size affects maneuverability at the largest scale, we used bio-logging data, aerial photogrammetry and a high-throughput approach to quantify the maneuvering performance of seven species of free-swimming baleen whale. We found that as body size increases, absolute maneuvering performance decreases: larger whales use lower accelerations and perform slower pitch-changes, rolls and turns than smaller species. We also found that baleen whales exhibit positive allometry of maneuvering performance: relative to their body size, larger whales use higher accelerations, and perform faster pitch-changes, rolls and certain types of turns than smaller species. However, not all maneuvers were impacted by body size in the same way, and we found that larger whales behaviorally adjust for their decreased agility by using turns that they can perform more effectively. The positive allometry of maneuvering performance suggests that large whales have compensated for their increased body size by evolving more effective control surfaces and by preferentially selecting maneuvers that play to their strengths.
Assuntos
Motivação , Baleias , Animais , Tamanho Corporal , NataçãoRESUMO
High efficiency lunate-tail swimming with high-aspect-ratio lifting surfaces has evolved in many vertebrate lineages, from fish to cetaceans. Baleen whales (Mysticeti) are the largest swimming animals that exhibit this locomotor strategy, and present an ideal study system to examine how morphology and the kinematics of swimming scale to the largest body sizes. We used data from whale-borne inertial sensors coupled with morphometric measurements from aerial drones to calculate the hydrodynamic performance of oscillatory swimming in six baleen whale species ranging in body length from 5 to 25â m (fin whale, Balaenoptera physalus; Bryde's whale, Balaenoptera edeni; sei whale, Balaenoptera borealis; Antarctic minke whale, Balaenoptera bonaerensis; humpback whale, Megaptera novaeangliae; and blue whale, Balaenoptera musculus). We found that mass-specific thrust increased with both swimming speed and body size. Froude efficiency, defined as the ratio of useful power output to the rate of energy input ( Sloop, 1978), generally increased with swimming speed but decreased on average with increasing body size. This finding is contrary to previous results in smaller animals, where Froude efficiency increased with body size. Although our empirically parameterized estimates for swimming baleen whale drag were higher than those of a simple gliding model, oscillatory locomotion at this scale exhibits generally high Froude efficiency as in other adept swimmers. Our results quantify the fine-scale kinematics and estimate the hydrodynamics of routine and energetically expensive swimming modes at the largest scale.
Assuntos
Balaenoptera , Baleia Comum , Animais , Regiões Antárticas , Fenômenos Biomecânicos , NataçãoRESUMO
Species distribution models (SDMs) are valuable tools for describing the occurrence of species and predicting suitable habitats. This study used generalized additive models (GAMs) and MaxEnt models to predict the relative densities of four cetacean species (sei whale Balaeanoptera borealis, southern right whale Eubalaena australis, Peale's dolphin Lagenorhynchus australis, and Commerson's dolphin Cephalorhynchus commersonii) in neritic waters (≤100 m depth) around the Falkland Islands, using boat survey data collected over three seasons (2017-2019). The model predictor variables (PVs) included remotely sensed environmental variables (sea surface temperature, SST, and chlorophyll-a concentration) and static geographical variables (e.g. water depth, distance to shore, slope). The GAM results explained 35 to 41% of the total deviance for sei whale, combined sei whales and unidentified large baleen whales, and Commerson's dolphins, but only 17% of the deviance for Peale's dolphins. The MaxEnt models for all species had low to moderate discriminatory power. The relative density of sei whales increased with SST in both models, and their predicted distribution was widespread across the inner shelf which is consistent with the use of Falklands' waters as a coastal summer feeding ground. Peale's dolphins and Commerson's dolphins were largely sympatric across the study area. However, the relative densities of Commerson's dolphins were generally predicted to be higher in nearshore, semi-enclosed, waters compared with Peale's dolphins, suggesting some habitat partitioning. The models for southern right whales performed poorly and the results were not considered meaningful, perhaps due to this species exhibiting fewer strong habitat preferences around the Falklands. The modelling results are applicable to marine spatial planning to identify where the occurrence of cetacean species and anthropogenic activities may most overlap. Additionally, the results can inform the process of delineating a potential Key Biodiversity Area for sei whales in the Falkland Islands.
Assuntos
Balaenoptera/fisiologia , Golfinhos/fisiologia , Ecossistema , Estações do Ano , Animais , Ilhas MalvinasRESUMO
Conspicuous vertebral column abnormalities in humpback dolphins (genus Sousa) were documented for the first time during 3 photo-identification field studies of small populations in Taiwan, Senegal and Angola. Seven Taiwanese humpback dolphins S. chinensis taiwanensis with vertebral column anomalies (lordosis, kyphosis or scoliosis) were identified, along with 2 possible cases of vertebral osteomyelitis. There was evidence from several individuals photographed over consecutive years that the anomalies became more pronounced with age. Three Atlantic humpback dolphins S. teuszii were observed with axial deviations of the vertebral column (lordosis and kyphosis). Another possible case was identified in a calf, and 2 further animals were photographed with dorsal indents potentially indicative of anomalies. Vertebral column anomalies of humpback dolphins were predominantly evident in the lumbo-caudal region, but one Atlantic humpback dolphin had an anomaly in the cervico-thoracic region. Lordosis and kyphosis occurred simultaneously in several individuals. Apart from the described anomalies, all dolphins appeared in good health and were not obviously underweight or noticeably compromised in swim speed. This study presents the first descriptions of vertebral column anomalies in the genus Sousa. The causative factors for the anomalies were unknown in every case and are potentially diverse. Whether these anomalies result in reduced fitness of individuals or populations merits attention, as both the Taiwanese and Atlantic humpback dolphin are species of high conservation concern.
Assuntos
Golfinhos , Cifose/veterinária , Lordose/veterinária , Escoliose/veterinária , Coluna Vertebral/anormalidades , Animais , Cifose/patologia , Lordose/patologia , Escoliose/patologia , Coluna Vertebral/patologiaRESUMO
Large-scale offshore renewable energy infrastructure construction in Scottish waters is anticipated in coming decades. An approach being pursued, with a view to preventing short-range marine mammal injury, is the introduction of additional noise sources to intentionally disturb and displace animals from renewable sites over the construction period. To date, no full and transparent consideration has been given to the long-term cost benefits of noise reduction compared with noise-inducing mitigation techniques. It has yet to be determined if the introduction of additional noise is consistent with the objectives of the EU Habitats Directive and the Marine Strategy Framework Directive.
Assuntos
Organismos Aquáticos/fisiologia , Conservação dos Recursos Naturais/legislação & jurisprudência , Legislação como Assunto , Mamíferos/fisiologia , Animais , União Europeia , Ruído , Phoca/fisiologia , EscóciaRESUMO
Understanding of the distributional ecology of the Atlantic humpback dolphin (Sousa teuszii) has been hampered by a lack of systematic and consistent sampling effort. The only comprehensive species distribution review was published in 2004; since then a considerable amount of novel information has emerged. We compiled 853 sighting, capture and specimen records of the species, and produced global and regional distribution maps. Of the 830 records where year was available, 63.1% dated from ≥2005 and confirm a contemporary occurrence in six marine ecoregions and 11 countries: Western Sahara, Mauritania, Senegal, Gambia, Guinea-Bissau, Guinea, Benin, Cameroon, Gabon, Congo Republic and Angola. Additionally, Togo is a recently confirmed range state. Group sizes ranged from 1 to 45 animals, with small groups of 1 to 10 animals comprising 65% of the sightings. Similarities were noted in the regions inhabited by Atlantic humpback dolphins across their range, particularly an occurrence in relatively shallow (predominantly ≤20 m) depths, in warm waters (average SSTs of 15.8-31.8°C) and in dynamic habitat strongly influenced by tidal patterns. These conditions occur in various habitats occupied by the species, including estuarine systems, open coasts, archipelagos, tidal mud-flats and sheltered bays. Sightings were recorded at distances of 13 m to 12.8 km (mean of 573 m) from land, indicating that the species occurs several kilometres from shore when suitable shallow habitat is present. The Atlantic humpback dolphin may be a 'nearshore' species based on oceanographic definitions incorporating water depth, wave action and sedimentation rather than on spatial distance from the coast.
Assuntos
Distribuição Animal/fisiologia , Golfinhos/fisiologia , Animais , Ecossistema , Dinâmica PopulacionalRESUMO
This article reviews the types and effectiveness of marine mammal mitigation measures used during some naval activities worldwide. The three main standard methods used to mitigate the potential impacts of naval sonar sound on marine mammals are (1) time/area planning (of exercises/active sonar use) to avoid marine mammals; (2) implementation of operational procedures (e.g. 'soft start' - where sound levels are gradually increased over time); and (3) monitoring of animals for the purpose of maintaining an 'exclusion zone' around the sound source. Suggestions towards a minimum worldwide mitigation standard are made.