Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892101

RESUMO

The central dogma treats the ribosome as a molecular machine that reads one mRNA codon at a time as it adds each amino acid to its growing peptide chain. However, this and previous studies suggest that ribosomes actually perceive pairs of adjacent codons as they take three-nucleotide steps along the mRNA. We examined GNN codons, which we find are surprisingly overrepresented in eukaryote protein-coding open reading frames (ORFs), especially immediately after NNU codons. Ribosome profiling experiments in yeast revealed that ribosomes with NNU at their aminoacyl (A) site have particularly elevated densities when NNU is immediately followed (3') by a GNN codon, indicating slower mRNA threading of the NNU codon from the ribosome's A to peptidyl (P) sites. Moreover, if the assessment was limited to ribosomes that have only recently arrived at the next codon, by examining 21-nucleotide ribosome footprints (21-nt RFPs), elevated densities were observed for multiple codon classes when followed by GNN. This striking translation slowdown at adjacent 5'-NNN GNN codon pairs is likely mediated, in part, by the ribosome's CAR surface, which acts as an extension of the A-site tRNA anticodon during ribosome translocation and interacts through hydrogen bonding and pi stacking with the GNN codon. The functional consequences of 5'-NNN GNN codon adjacency are expected to influence the evolution of protein coding sequences.


Assuntos
Códon , Fases de Leitura Aberta , Biossíntese de Proteínas , RNA Mensageiro , Ribossomos , Códon/genética , Ribossomos/metabolismo , Ribossomos/genética , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anticódon/genética
2.
J Funct Biomater ; 15(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38921541

RESUMO

Root caries caused by cariogenic bacteria are a burden on a large number of individuals worldwide, especially the elderly. Applying a protective coating to exposed root surfaces has the potential to inhibit the development of caries, thus preserving natural teeth. This study aimed to develop a novel antibacterial coating to combat root caries and evaluate its effectiveness using the antibacterial monomer dimethylaminohexadecyl methacrylate (DMAHDM). DMAHDM was synthesized and incorporated into a resin consisting of 55.8% urethane dimethacrylate (UDMA) and 44.2% TEG-DVBE (UV) at a 10% mass fraction of glass filler. Multiple concentrations of DMAHDM were tested for their impact on the resin's mechanical and physical properties. S. mutans biofilms grown on resin disks were analyzed for antibacterial efficacy. Cytotoxicity was assessed against human gingival fibroblasts (HGFs). The results showed an 8-log reduction in colony-forming units (CFUs) against S. mutans biofilm (mean ± sd; n = 6) (p < 0.05) when 5% DMAHDM was incorporated into the UV resin. There was a 90% reduction in metabolic activity and lactic acid production. A low level of cytotoxicity against HGF was observed without compromising the physical and mechanical properties of the resin. This coating material demonstrated promising physical properties, potent antibacterial effects, and low toxicity, suggesting its potential to protect exposed roots from caries in various dental procedures and among elderly individuals with gingival recession.

3.
Dent Mater ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38942710

RESUMO

OBJECTIVE: Streptococcus mutans (S. mutans) is a major contributor to dental caries, with its ability to synthesize extracellular polysaccharides (EPS) and biofilms. The gcrR gene is a regulator of EPS synthesis and biofilm formation. The objectives of this study were to investigate a novel strategy of combining gcrR gene over-expression with dimethylaminohexadecyl methacrylate (DMAHDM), and to determine their in vivo efficacy in reducing caries in rats for the first time. METHODS: Two types of S. mutans were tested: Parent S. mutans; and gcrR gene over-expressed S. mutans (gcrR OE S. mutans). Bacterial minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were measured with DMAHDM and chlorhexidine (CHX). Biofilm biomass, polysaccharide, lactic acid production, live/dead staining, colony-forming units (CFUs), and metabolic activity (MTT) were evaluated. A Sprague-Dawley rat model was used with parent S. mutans and gcrR OE S. mutans colonization to determine caries-inhibition in vivo. RESULTS: Drug-susceptibility of gcrR OE S. mutans to DMAHDM or CHX was 2-fold higher than that of parent S. mutans. DMAHDM reduced biofilm CFU by 3-4 logs. Importantly, the combined gcrR OE S. mutans+ DMAHDM dual strategy reduced biofilm CFU by 5 logs. In the rat model, the parent S. mutans group had a higher cariogenicity in dentinal (Dm) and extensive dentinal (Dx) regions. The DMAHDM + gcrR OE group reduced the Dm and Dx caries to only 20 % and 0 %, those of parent S. mutans + PBS control group (p < 0.05). The total caries severity of gcrR OE + DMAHDM group was decreased to 51 % that of parent S. mutans control (p < 0.05). SIGNIFICANCE: The strategy of combining S. mutans gcrR over-expression with antibacterial monomer reducing biofilm acids by 97 %, and reduced in vivo total caries in rats by 48 %. The gcrR over-expression + DMAHDM strategy is promising for a wide range of dental applications to inhibit caries and protect tooth structures.

4.
Dent Mater J ; 43(3): 346-358, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583998

RESUMO

Conventional resin-based sealants release minimal fluoride ions (F) and lack antibacterial activity. The objectives of this study were to: (1) develop a novel bioactive sealant containing calcium fluoride nanoparticles (nCaF2) and antibacterial dimethylaminohexadecyl methacrylate (DMAHDM), and (2) investigate mechanical performance, F recharge and re-release, microleakage, sealing ability and cytotoxicity. Helioseal F served as commercial control. The initial F release from sealant containing 20% nCaF2 was 25-fold that of Helioseal F. After ion exhaustion and recharge, the F re-release from bioactive sealant did not decrease with increasing number of recharge and re-release cycles. Elastic modulus of new bioactive sealant was 44% higher than Helioseal F. The new sealant had excellent sealing, minimal microleakage, and good cytocompatibility. Hence, the nanostructured sealant had substantial and sustained F release and antibacterial activity, good sealing ability and biocompatibility. The novel bioactive nCaF2 sealant is promising to provide long-term F ions for caries prevention.


Assuntos
Antibacterianos , Fluoreto de Cálcio , Infiltração Dentária , Teste de Materiais , Metacrilatos , Nanopartículas , Selantes de Fossas e Fissuras , Selantes de Fossas e Fissuras/química , Antibacterianos/farmacologia , Antibacterianos/química , Fluoreto de Cálcio/química , Metacrilatos/química , Nanopartículas/química , Fluoretos/química , Fluoretos/farmacologia , Módulo de Elasticidade , Animais , Camundongos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Propriedades de Superfície , Resinas Compostas
5.
J Am Chem Soc ; 146(11): 7763-7770, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456418

RESUMO

Blends comprising organic semiconductors and inorganic quantum dots (QDs) are relevant for many optoelectronic applications and devices. However, the individual components in organic-QD blends have a strong tendency to aggregate and phase-separate during film processing, compromising both their structural and electronic properties. Here, we demonstrate a QD surface engineering approach using electronically active, highly soluble semiconductor ligands that are matched to the organic semiconductor host material to achieve well-dispersed inorganic-organic blend films, as characterized by X-ray and neutron scattering, and electron microscopies. This approach preserves the electronic properties of the organic and QD phases and also creates an optimized interface between them. We exemplify this in two emerging applications, singlet-fission-based photon multiplication (SF-PM) and triplet-triplet annihilation-based photon upconversion (TTA-UC). Steady-state and time-resolved optical spectroscopy shows that triplet excitons can be transferred with near unity efficiently across the organic-inorganic interface, while the organic films maintain efficient SF (190% yield) in the organic phase. By changing the relative energy between organic and inorganic components, yellow upconverted emission is observed upon 790 nm NIR excitation. Overall, we provide a highly versatile approach to overcome longstanding challenges in the blending of organic semiconductors with QDs that have relevance for many optical and optoelectronic applications.

6.
Saudi Dent J ; 36(1): 99-104, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38375385

RESUMO

Background: A major drawback of resin composites is their tendency to accumulate microbial biofilms that can lead to secondary caries. The objective of this study was to compare the mechanical properties and the degree of conversion of commercial resin-based composite materials containing a contact-killing antibacterial agent, dimethylaminohexadecyl methacrylate (DMAHDM), at different concentrations, with a fluoride-releasing composite material. Materials and methods: Four groups were tested: Tetric N Ceram composite material (G1), Tetric Evo Ceram (G2), and Tetric N Ceram with the addition of contact-killing antibacterial agent DMAHDM at concentrations of 3% (G3) and 5% (G4). The mechanical properties, including flexural strength, elastic modulus, and Vickers microhardness and the degree of conversion were investigated. Results: Adding 3 % and 5 % DMAHDM resulted in flexural strength values that were comparable to Tetric Evo Ceram. Tetric N Ceram was comparable to the group containing 3 % DMAHDM (p > 0.05). However, it was significantly greater when compared to Tetric Evo Ceram (93.3 ± 9.4) and 5 % DMAHDM (p < 0.05). Both the elastic modulus and Vickers microhardness values of Tetric N Ceram were significantly higher than those of the other groups (p < 0.05). Furthermore, the elastic modulus of Tetric Evo Ceram showed similar results to groups with 3 % and 5 % DMAHDM. Nevertheless, the Vickers microhardness value is significantly higher when compared to 5 % DMAHDM (0.394 ± 0.021) (p < 0.05) while it was comparable to that of 3 % DMAHDM (0.484 ± 0.016) (p > 0.05). There was no statistically significant difference in the degree of conversion between the groups (p > 0.05). Conclusion: Adding 3% DMAHDM to Tetric N Ceram resulted in flexural strength values that were similar to those of Tetric N Ceram and Tetric Evo Ceram. DMAHDM did not affect the degree of conversion of Tetric N Ceram composite.

7.
J Dent ; 142: 104844, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38253119

RESUMO

OBJECTIVE: The article reviewed novel orthodontic devices and materials with bioactive capacities in recent years and elaborated on their properties, aiming to provide guidance and reference for future scientific research and clinical applications. DATA, SOURCES AND STUDY SELECTION: Researches on remineralization, protein repellent, antimicrobial activity and multifunctional novel bioactive orthodontic devices and materials were included. The search of articles was carried out in Web of Science, PubMed, Medline and Scopus. CONCLUSIONS: The new generation of orthodontic devices and materials with bioactive capacities has broad application prospects. However, most of the current studies are limited to in vitro studies and cannot explore the true effects of various bioactive devices and materials applied in oral environments. More research, especially in vivo researches, is needed to assist in clinical application. CLINICAL SIGNIFICANCE: Enamel demineralization (ED) is a common complication in orthodontic treatments. Prolonged ED can lead to dental caries, impacting both the aesthetics and health of teeth. It is of great significance to develop antibacterial orthodontic devices and materials that can inhibit bacterial accumulation and prevent ED. However, materials with only preventive effect may fall short of addressing actual needs. Hence, the development of novel bioactive orthodontic materials with remineralizing abilities is imperative. The article reviewed the recent advancements in bioactive orthodontic devices and materials, offering guidance and serving as a reference for future scientific research and clinical applications.


Assuntos
Cárie Dentária , Braquetes Ortodônticos , Desmineralização do Dente , Humanos , Cárie Dentária/prevenção & controle , Estética Dentária , Esmalte Dentário , Desmineralização do Dente/prevenção & controle
8.
ACS Appl Mater Interfaces ; 16(2): 2120-2139, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170561

RESUMO

The process of bonding to dentin is complex and dynamic, greatly impacting the longevity of dental restorations. The tooth/dental material interface is degraded by bacterial acids, matrix metalloproteinases (MMPs), and hydrolysis. As a result, bonded dental restorations face reduced longevity due to adhesive interfacial breakdown, leading to leakage, tooth pain, recurrent caries, and costly restoration replacements. To address this issue, we synthesized and characterized a multifunctional magnetic platform, CHX@SiQuac@Fe3O4@m-SiO2, to provide several beneficial functions. The platform comprises Fe3O4 microparticles and chlorhexidine (CHX) encapsulated within mesoporous silica, which was silanized by an antibacterial quaternary ammonium silane (SiQuac). This platform simultaneously targets bacterial inhibition, stability of the hybrid layer, and enhanced filler infiltration by magnetic motion. Comprehensive experiments include X-ray diffraction, FT-IR, VSM, EDS, N2 adsorption-desorption (BET), transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, and UV-vis spectroscopy. Then, CHX@SiQuac@Fe3O4@m-SiO2 was incorporated into an experimental adhesive resin for dental bonding restorations, followed by immediate and long-term antibacterial assessment, cytotoxicity evaluation, and mechanical and bonding performance. The results confirmed the multifunctional nature of CHX@SiQuac@Fe3O4@m-SiO2. This work outlined a roadmap for (1) designing and tuning an adhesive formulation containing the new platform CHX@SiQuac@Fe3O4@m-SiO2; (2) assessing microtensile bond strength to dentin using a clinically relevant model of simulated hydrostatic pulpal pressure; and (3) investigating the antibacterial outcome performance of the particles when embedded into the formulated adhesives over time. The results showed that at 4 wt % of CHX@SiQuac@Fe3O4@m-SiO2-doped adhesive under the guided magnetic field, the bond strength increased by 28%. CHX@SiQuac@Fe3O4@m-SiO2 enhanced dentin adhesion in the magnetic guide bonding process without altering adhesive properties or causing cytotoxicity. This finding presents a promising method for strengthening the tooth/dental material interface's stability and extending the bonded restorations' lifespan.


Assuntos
Silanos , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Clorexidina/química , Antibacterianos/farmacologia , Cimentos Dentários/farmacologia , Materiais Dentários , Fenômenos Magnéticos , Dentina , Teste de Materiais , Resistência à Tração
9.
Artigo em Inglês | MEDLINE | ID: mdl-38183633

RESUMO

The repair and regeneration of critical-sized bone defects remain an urgent challenge. Bone tissue engineering represents an exciting solution for regeneration of large bone defects. Recently, the importance of innervation in tissue-engineered bone regeneration has been increasingly recognized. The cross talk between nerve and bone provides important clues for bone repair and regeneration. Furthermore, the promotion of angiogenesis by innervation can accelerate new bone formation. However, the mechanisms involved in the promotion of vascular and bone regeneration by the nervous system have not yet been established. In addition, simultaneous neurogenesis and vascularization in bone tissue engineering have not been fully investigated. This article represents the first review on the effects of innervation in enhancing angiogenesis and osteogenesis in bone and dental tissue engineering. Cutting-edge research on the effects of innervation through biomaterials on bone and dental tissue repairs is reviewed. The effects of various nerve-related factors and cells on bone regeneration are discussed. Finally, novel clinical applications of innervation for bone, dental, and craniofacial tissue regeneration are also examined.

10.
Dent Mater ; 40(2): 179-189, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37951751

RESUMO

OBJECTIVES: Dental caries is caused by acids from biofilms. pH-sensitive nanoparticle carriers could achieve improved targeted effectiveness. The objectives of this study were to develop novel mesoporous silica nanoparticles carrying nanosilver and chlorhexidine (nMS-nAg-Chx), and investigate the inhibition of biofilms as well as the modulation of biofilm to suppress acidogenic and promote benign species for the first time. METHODS: nMS-nAg was synthesized via a modified sol-gel method. Carboxylate group functionalized nMS-nAg (COOH-nMS-nAg) was prepared and Chx was added via electrostatic interaction. Minimal inhibitory concentration (MIC), inhibition zone, and growth curves were evaluated. Streptococcus mutans (S. mutans), Streptococcus gordonii (S. gordonii), and Streptococcus sanguinis (S. sanguinis) formed multispecies biofilms. Metabolic activity, biofilm lactic acid, exopolysaccharides (EPS), and TaqMan real-time polymerase chain reaction (RT-PCR) were tested. Biofilm structures and biomass were observed by scanning electron microscopy (SEM) and live/dead bacteria staining. RESULTS: nMS-nAg-Chx possessed pH-responsive properties, where Chx release increased at lower pH. nMS-nAg-Chx showed good biocompatibility. nMS-nAg-Chx exhibited a strong antibacterial function, reducing biofilm metabolic activity and lactic acid as compared to control (p < 0.05, n = 6). Moreso, biofilm biomass was dramatically suppressed in nMS-nAg-Chx groups. In control group, there was an increasing trend of S. mutans proportion in the multispecies biofilm, with S. mutans reaching 89.1% at 72 h. In sharp contrast, in nMS-nAg-Chx group of 25 µg/mL, the ratio of S. mutans dropped to 43.7% and the proportion of S. gordonii and S. sanguinis increased from 19.8% and 10.9 to 69.8% and 56.3%, correspondingly. CONCLUSION: pH-sensitive nMS-nAg-Chx had potent antibacterial effects and modulated biofilm toward a non-cariogenic tendency, decreasing the cariogenic species nearly halved and increasing the benign species approximately twofold. nMS-nAg-Chx is promising for applications in mouth rinse and endodontic irrigants, and as fillers in resins to prevent caries.


Assuntos
Cárie Dentária , Nanopartículas , Prata , Humanos , Clorexidina/farmacologia , Clorexidina/química , Cárie Dentária/microbiologia , Dióxido de Silício/farmacologia , Dióxido de Silício/química , Antibacterianos/farmacologia , Antibacterianos/química , Streptococcus mutans , Nanopartículas/química , Ácido Láctico/análise , Biofilmes , Concentração de Íons de Hidrogênio
11.
Dent Mater ; 40(2): 244-253, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37981511

RESUMO

OBJECTIVE: Implant-related infections from the adhesion and proliferation of dental plaque are a major challenge for dental implants. The objectives of this study were to: (1) develop novel antibacterial titanium (Ti) healing abutment; (2) investigate the inhibition of implant infection-related pathogenic bacteria and saliva-derived biofilm, and evaluate the biocompatibility of the new material for the first time. METHODS: Dimethylaminohexadecyl methacrylate (DMAHDM) and hydroxyapatite (HAP) were polymerized via polydopamine (PDA) on Ti. Staphylococcus aureus (S. aureus), Streptococcus sanguinis (S. sanguinis) and human saliva-derived biofilms were tested. After 4 weeks of DMAHDM release, the antibacterial efficacy of the DMAHDM remaining on Ti surface and the DMADHM in medium was tested. Biocompatibility was determined using human gingival fibroblasts (HGFs) and periodontal ligament stem cells (PDLSCs). RESULTS: The DMAHDM-loaded coating filled into the nano-voids in Ti surfaces. The modified Ti showed potent antibacterial activity, reducing the CFU of S. aureus, S. sanguinis and saliva-derived biofilms by 8, 7 and 4 log, respectively (P < 0.05). After 4 weeks of release, the modified Ti was still able to reduce S. aureus and S. sanguinis biofilm CFU by 1-3 log (P < 0.05). This provided strong antibacterial function for more than 4 weeks, which were the high-risk period for implant infections. The new material showed excellent biocompatibility when compared to control (P > 0.05). CONCLUSION: Novel DMAHDM-loaded Ti healing abutment had strong antibacterial effects, reducing biofilm CFUs by orders of magnitude, and lasting for over four weeks to cover the high-risk period for implant infections. The novel antibacterial Ti is promising to combat implant-related infections in dental, craniofacial and orthopedic applications.


Assuntos
Implantes Dentários , Metilaminas , Titânio , Humanos , Titânio/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Metacrilatos/farmacologia , Biofilmes
12.
Materials (Basel) ; 16(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895752

RESUMO

Recurrent caries remain a persistent concern, often linked to microleakage and a lack of bioactivity in contemporary dental composites. Our study aims to address this issue by developing a low-shrinkage-stress nanocomposite with antibiofilm and remineralization capabilities, thus countering the progression of recurrent caries. In the present study, we formulated low-shrinkage-stress nanocomposites by combining triethylene glycol divinylbenzyl ether and urethane dimethacrylate, incorporating dimethylaminododecyl methacrylate (DMADDM), along with nanoparticles of calcium fluoride (nCaF2) and nanoparticles of amorphous calcium phosphate (NACP). The biofilm viability, biofilm metabolic activity, lactic acid production, and ion release were evaluated. The novel formulations containing 3% DMADDM exhibited a potent antibiofilm activity, exhibiting a 4-log reduction in the human salivary biofilm CFUs compared to controls (p < 0.001). Additionally, significant reductions were observed in biofilm biomass and lactic acid (p < 0.05). By integrating both 10% NACP and 10% nCaF2 into one formulation, efficient ion release was achieved, yielding concentrations of 3.02 ± 0.21 mmol/L for Ca, 0.5 ± 0.05 mmol/L for P, and 0.37 ± 0.01 mmol/L for F ions. The innovative mixture of DMADDM, NACP, and nCaF2 displayed strong antibiofilm effects on salivary biofilm while concomitantly releasing a significant amount of remineralizing ions. This nanocomposite is a promising dental material with antibiofilm and remineralization capacities, with the potential to reduce polymerization-related microleakage and recurrent caries.

13.
J Dent ; 138: 104690, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37666466

RESUMO

BACKGROUND: Vascularization plays an important role in dental and craniofacial regenerations. Human periodontal ligament stem cells (hPDLSCs) are a promising cell source and, when co-cultured with human umbilical vein endothelial cells (hUVECs), could promote vascularization. The objectives of this study were to develop a novel prevascularized hPDLSC-hUVEC-calcium phosphate construct, and investigate the osteogenic and angiogenic efficacy of this construct with human platelet lysate (hPL) in cranial defects in rats for the first time. METHODS: hPDLSCs and hUVECs were co-cultured on calcium phosphate cement (CPC) scaffolds with hPL. Cell proliferation, angiogenic gene expression, angiogenesis, alkaline phosphatase activity, and cell-synthesized minerals were determined. Bone and vascular regenerations were investigated in rat critical-sized cranial defects in vivo. RESULTS: hPDLSC-hUVEC-CPC-hPL group had 2-fold greater angiogenic expressions and cell-synthesized mineral synthesis than hPDLSC-hUVEC-CPC group (p < 0.05). Microcapillary-like structures were formed on scaffolds in vitro. hPDLSC-hUVEC-CPC-hPL group had more vessels than hPDLSC-hUVEC-CPC group (p < 0.05). In cranial defects in rats, hPDLSC-hUVEC-CPC-hPL group regenerated new bone amount that was 2.1 folds and 4.0 folds, respectively, that of hPDLSC-hUVEC-CPC group and CPC control (p < 0.05). New blood vessel density of hPDLSC-hUVEC-CPC-hPL group was 2 folds and 7.9 folds, respectively, that of hPDLSC-hUVEC-CPC group and CPC control (p < 0.05). CONCLUSION: The hPL pre-culture method is promising to enhance bone regeneration via prevascularized CPC. Novel hPDLSC-hUVEC-CPC-hPL prevascularized construct increased new bone formation and blood vessel density by 4-8 folds over CPC control. CLINICAL SIGNIFICANCE: Novel hPDLSC-hUVEC-hPL-CPC prevascularized construct greatly increased bone and vascular regeneration in vivo and hence is promising for a wide range of craniofacial applications.


Assuntos
Ligamento Periodontal , Alicerces Teciduais , Humanos , Animais , Ratos , Ratos Nus , Alicerces Teciduais/química , Células-Tronco , Osteogênese , Regeneração Óssea , Células Endoteliais da Veia Umbilical Humana , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Crânio/cirurgia , Diferenciação Celular , Células Cultivadas
14.
Bioengineering (Basel) ; 10(9)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37760093

RESUMO

OBJECTIVES: Composites are commonly used for tooth restorations, but recurrent caries often lead to restoration failures due to polymerization shrinkage-stress-induced marginal leakage. The aims of this research were to: (1) develop novel low-shrinkage-stress (L.S.S.) nanocomposites containing dimethylaminododecyl methacrylate (DMADDM) with nanoparticles of calcium fluoride (nCaF2) or amorphous calcium phosphate (NACP) for remineralization; (2) investigate antibacterial and cytocompatibility properties. METHODS: Nanocomposites were made by mixing triethylene glycol divinylbenzyl ether with urethane dimethacrylate containing 3% DMADDM, 20% nCaF2, and 20% NACP. Flexural strength, elastic modulus, antibacterial properties against Streptococcus mutans biofilms, and cytotoxicity against human gingival fibroblasts and dental pulp stem cells were tested. RESULTS: Nanocomposites with DMADDM and nCaF2 or NACP had flexural strengths matching commercial composite control without bioactivity. The new nanocomposite provided potent antibacterial properties, reducing biofilm CFU by 6 logs, and reducing lactic acid synthesis and metabolic function of biofilms by 90%, compared to controls (p < 0.05). The new nanocomposites produced excellent cell viability matching commercial control (p > 0.05). CONCLUSIONS: Bioactive L.S.S. antibacterial nanocomposites with nCaF2 and NACP had excellent bioactivity without compromising mechanical and cytocompatible properties. The new nanocomposites are promising for a wide range of dental restorations by improving marginal integrity by reducing shrinkage stress, defending tooth structures, and minimizing cariogenic biofilms.

15.
Dent Mater ; 39(10): 872-885, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37574338

RESUMO

OBJECTIVES: Injectable and self-setting calcium phosphate cement scaffold (CPC) capable of encapsulating and delivering stem cells and bioactive agents would be highly beneficial for dental and craniofacial repairs. The objectives of this study were to: (1) develop a novel injectable CPC scaffold encapsulating human periodontal ligament stem cells (hPDLSCs) and metformin (Met) for bone engineering; (2) test bone regeneration efficacy in vitro and in vivo. METHODS: hPDLSCs were encapsulated in degradable alginate fibers, which were then mixed into CPC paste. Five groups were tested: (1) CPC control; (2) CPC + hPDLSC-fibers + 0% Met (CPC + hPDLSCs + 0%Met); (3) CPC + hPDLSC-fibers + 0.1% Met (CPC + hPDLSCs + 0.1%Met); (4) CPC + hPDLSC-fibers + 0.2% Met (CPC + hPDLSCs + 0.2%Met); (5) CPC + hPDLSC-fibers + 0.4% Met (CPC + hPDLSCs + 0.4%Met). The injectability, mechanical properties, metformin release, and hPDLSC osteogenic differentiation and bone mineral were determined in vitro. A rat cranial defect model was used to evaluate new bone formation. RESULTS: The novel construct had good injectability and physical properties. Alginate fibers degraded in 7 days and released hPDLSCs, with 5-fold increase of proliferation (p<0.05). The ALP activity and mineral synthesis of hPDLSCs were increased by Met delivery (p<0.05). Among all groups, CPC+hPDLSCs+ 0.1%Met showed the greatest cell mineralization and osteogenesis, which were 1.5-10 folds those without Met (p<0.05). Compared to CPC control, CPC+hPDLSCs+ 0.1%Met enhanced bone regeneration in rats by 9 folds, and increased vascularization by 3 folds (p<0.05). CONCLUSIONS: The novel injectable construct with hPDLSC and Met encapsulation demonstrated excellent efficacy for bone regeneration and vascularization in vivo in an animal model. CPC+hPDLSCs+ 0.1%Met is highly promising for dental and craniofacial applications.


Assuntos
Metformina , Osteogênese , Ratos , Humanos , Animais , Alicerces Teciduais , Ligamento Periodontal , Metformina/farmacologia , Regeneração Óssea , Células-Tronco , Diferenciação Celular , Fosfatos de Cálcio/farmacologia , Alginatos/farmacologia , Células Cultivadas
16.
J Funct Biomater ; 14(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37504831

RESUMO

OBJECTIVES: Current dental resins exhibit polymerization shrinkage causing microleakage, which has the potential to cause recurrent caries. Our objectives were to create and characterize low-shrinkage-stress (LSS) composites with dimethylaminododecyl methacrylate (DMADDM) as an antibacterial agent to combat recurrent caries. METHODS: Triethylene glycol divinylbenzyl ether and urethane dimethacrylate were used to reduce shrinkage stress. DMADDM was incorporated at different mass fractions (0%, 1.5%, 3%, and 5%). Flexural strength, elastic modulus, degree of conversion, polymerization stress, and antimicrobial activity were assessed. RESULTS: The composite with 5% DMADDM demonstrated higher flexural strength than the commercial group (p < 0.05). The addition of DMADDM in BisGMA-TEGDMA resin and LSS resin achieved clinically acceptable degrees of conversion. However, LSS composites exhibited much lower polymerization shrinkage stress than BisGMA-TEGDMA composite groups (p < 0.05). The addition of 3% and 5% DMADDM showed a 6-log reduction in Streptococcus mutans (S. mutans) biofilm CFUs compared to commercial control (p < 0.001). Biofilm biomass and lactic acid were also substantially decreased via DMADDM (p < 0.05). CONCLUSIONS: The novel LSS dental composite containing 3% DMADDM demonstrated potent antibacterial action against S. mutans biofilms and much lower polymerization shrinkage-stress, while maintaining excellent mechanical characteristics. The new composite is promising for dental applications to prevent secondary caries and increase restoration longevity.

17.
J Dent ; 136: 104604, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37419382

RESUMO

OBJECTIVES: To review the literature on recurrent caries models used to evaluate restorative materials, compare reported methodology and parameters, and devise specific recommendations to be considered in future investigations. DATA: The following were extracted: study design, sample characteristics, source of teeth, name of restorations compared including controls, recurrent caries model type, type of demineralizing and remineralizing solutions, type of biofilm used, methods to detect recurrent caries. SOURCES: Literature searches were performed in OVID Medline, EMBASE, SCOPUS, and Cochrane Library. STUDY SELECTION: For a study to be included, it had to examine dental materials for tooth restoration purposes only with a valid control group and evaluate restorative dental materials regardless of the form of the teeth caries model used or nature of the tooth structure used. A total of 91 studies were included. Most of the studies presented were in vitro. Human teeth were the main source of specimens utilized. Around 88% of the studies used specimens without an artificial gap, and 44% used a chemical model. S. mutans was the main bacterial species used in microbial caries models. CONCLUSION: The findings of this review provided an insight into the performance of available dental materials assessed using different recurrent caries models, yet this review cannot be used as a guideline for material selection. Selecting the appropriate restorative material relies on several patient-related factors such as microbiota, occlusion, and diet that are not comprehensively taken into consideration in recurrent caries models and thus hinder reliable comparison. CLINICAL SIGNIFICANCE: Due to the heterogenicity of variables among studies on the performance of dental restorative materials, this scoping review aimed to provide insights for dental researchers concerning the available recurrent caries models, testing methods used, and aspects of comparison between these materials including their characteristics and limitations.


Assuntos
Resinas Compostas , Cárie Dentária , Humanos , Restauração Dentária Permanente/métodos , Suscetibilidade à Cárie Dentária , Dente Decíduo
18.
Nanoscale Horiz ; 8(8): 1090-1097, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37272286

RESUMO

Organic-inorganic nanocomposite films formed from blends of small-molecule organic semiconductors and colloidal quantum dots are attractive candidates for high efficiency, low-cost solar energy harvesting devices. Understanding and controlling the self-assembly of the resulting organic-inorganic nanocomposite films is crucial in optimising device performance, not only at a lab-scale but for large-scale, high-throughput printing and coating methods. Here, in situ grazing incidence X-ray scattering (GIXS) gives direct insights into how small-molecule organic semiconductors and colloidal quantum dots self-assemble during blade coating. Results show that for two blends separated only by a small difference in the structure of the small molecule forming the organic phase, crystallisation may proceed down two distinct routes. It either occurs spontaneously or is mediated by the formation of quantum dot aggregates. Irrespective of the initial crystallisation route, the small-molecule crystallisation acts to exclude the quantum dot inclusions from the growing crystalline matrix phase. These results provide important fundamental understanding of structure formation in nanocomposite films of organic small molecules and colloidal quantum dots prepared via solution processing routes. It highlights the fundamental difference to structural evolution which can be made by seemingly small changes in system composition. It provides routes for the structural design and optimisation of solution-processed nanocomposites that are compatible with the large-scale deposition manufacturing techniques that are crucial in driving their wider adoption in energy harvesting applications.

19.
J Dent ; 133: 104497, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37011782

RESUMO

OBJECTIVE: To provide the first review on cutting-edge research on the development of new bioactive restorations to inhibit secondary caries in enamel and dentin under biofilms. State-of-the-art bioactive and therapeutic materials design, structure-property relationships, performance and efficacies in oral biofilm models. DATA, SOURCES AND STUDY SELECTION: Researches on development and assessment new secondary caries inhibition restorations via in vitro and in vivo biofilm-based secondary caries models were included. The search of articles was carried out in Web of Science, PubMed, Medline and Scopus. CONCLUSIONS: Based on the found articles, novel bioactive materials are divided into different categories according to their remineralization and antibacterial biofunctions. In vitro and in vivo biofilm-based secondary caries models are effective way of evaluating the materials efficacies. However, new intelligent and pH-responsive materials were still urgent need. And the materials evaluation should be performed via more clinical relevant biofilm-based secondary caries models. CLINICAL SIGNIFICANCE: Secondary caries is a primary reason for dental restoration failures. Biofilms produce acids, causing demineralization and secondary caries. To inhibit dental caries and improve the health and quality of life for millions of people, it is necessary to summarize the present state of technologies and new advances in dental biomaterials for preventing secondary caries and protecting tooth structures against oral biofilm attacks. In addition, suggestions for future studies are provided.


Assuntos
Cárie Dentária , Humanos , Cárie Dentária/terapia , Suscetibilidade à Cárie Dentária , Qualidade de Vida , Esmalte Dentário , Dentina/química , Biofilmes
20.
Langmuir ; 39(13): 4799-4808, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36940205

RESUMO

Controlling the dispersibility of nanocrystalline inorganic quantum dots (QDs) within organic semiconductor (OSC):QD nanocomposite films is critical for a wide range of optoelectronic devices. This work demonstrates how small changes to the OSC host molecule can have a dramatic detrimental effect on QD dispersibility within the host organic semiconductor matrix as quantified by grazing incidence X-ray scattering. It is commonplace to modify QD surface chemistry to enhance QD dispersibility within an OSC host. Here, an alternative route toward optimizing QD dispersibilities is demonstrated, which dramatically improves QD dispersibilities through blending two different OSCs to form a fully mixed OSC matrix phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA