RESUMO
In 2015 and 2016, groundwater samples were collected in Hanoi to analyse the isotopic composition (δ2H, δ18O and 3H) and elucidate the relationship between groundwater and surface water, as well as the origin of the groundwater. The values for δ18O and δ2H indicate that the groundwater originated from evaporated meteoric water and the isotope enrichment is due to the evaporation of shallow groundwater. Evaporation is the primary process affecting stable isotope signatures. Water samples collected from both Holocene and Pleistocene aquifers are more depleted in the heavy isotopes 18O and 2H than the rainfall in the area. This indicates that part of the groundwater is paleo-groundwater or may be caused by the altitude effect due to recharge at a higher elevation. The results also show the close interaction between two granular aquifers and the Red River. Furthermore, the contribution of modern groundwater could be observed by the appearance of tritium in both aquifers. The presence of tritium indicates that originally tritium-free groundwater from the margins of the basin has been diluted by young water. The results of this study might help managers to evaluate the origin and reserves of groundwater more accurately.
Assuntos
Deutério/análise , Monitoramento Ambiental/métodos , Água Subterrânea/química , Isótopos de Oxigênio/análise , Rios/química , Chuva/química , Vietnã , Movimentos da ÁguaRESUMO
The Gunt River catchment in the Central Pamirs is a representative of the headwater catchments of the Aral Sea Basin. It covers 14,000 km(2), spanning altitudes between 2000 and 6700 m a.s.l. In a monitoring network, water samples were taken at 30 sampling points every month and analysed for the stable water isotopes ((18)O and (2)H). Our first results show δ(2)H values in the range from-131.2 to-94.9 and δ(18)O values from-18.0 to-14.0 . The stable isotope patterns in the catchment seem to follow a systematic way, dominated by an altitude effect with a mean Δ Î´(2)H=-3.6 /100 m. The observed seasonal variations can be explained by geographical aspects such as the influence of different wind systems as well as melting processes.
Assuntos
Rios/química , Altitude , Deutério/análise , Monitoramento Ambiental/métodos , Isótopos de Oxigênio/análise , Estações do Ano , TadjiquistãoRESUMO
For the Early Iron Age western Hallstatt culture, which includes the site of Magdalenenberg in southwest Germany, it has been proposed that people were mobile and maintained far reaching social and trading networks throughout Europe. We tested this hypothesis by analyzing multiple isotopes (strontium, oxygen, sulfur, carbon, and nitrogen) of the preserved skeletons from the Magdalenenberg elite cemetery to determine diets and to look for evidence of mobility. The analysis of carbon, nitrogen, and sulfur isotope ratios in collagen of humans (n = 50) and associated domestic fauna (n = 10) indicates a terrestrial-based diet. There was a heterogeneous range of isotope values in both strontium (0.70725 to 0.71923, n = 76) and oxygen (13.4 to 18.5, n = 78) measured in tooth enamel. Although many of the individuals had values consistent with being from Hallstatt culture sites within southwest Germany, some individuals likely originated from further afield. Possible areas include the Alps of Switzerland and Austria or even locations in Italy. Our study strongly supports the assumption of far reaching social and economic networks in the western Hallstatt culture.
Assuntos
Osso e Ossos/química , Isótopos de Oxigênio/análise , Isótopos de Estrôncio/análise , Dente/química , População Branca/estatística & dados numéricos , Adolescente , Adulto , Animais , Antropologia Física , Bovinos , Cemitérios , Criança , Pré-Escolar , Colágeno/química , Colágeno/isolamento & purificação , Dieta/história , Emigração e Imigração/história , Feminino , Alemanha , Cabras , História Antiga , Humanos , Lactente , Modelos Lineares , Masculino , OvinosRESUMO
This study presents selected results, applying environmental tracers to investigate lake water-groundwater interactions at two study sites located in Lusatia, Germany. The focus of the investigations were two meromictic pit lakes and their adjacent aquifers. In order to follow hydrodynamic processes between lake and groundwater, mixing patterns within the lakes as well as ages of lake and groundwater, water samples of ground- and lake water were collected at three occasions, representing summer and winter conditions in the aquatic systems. The water samples were analysed for stable isotopes (deuterium, oxygen-18) and tritium and sulphurhexafluoride (SF(6) concentration). Lake water profiles of conductivity and (18)O could validate the permanent stratification pattern of both the lakes. Groundwater data sets showed a heterogeneous local distribution in stable isotope values between rain and lake water. A two-component mixing model had been adopted only from (18)O data to determine lake water proportions in the surrounding groundwater wells in order to correct measured tritium and SF(6) concentrations in groundwater samples. This procedure had been hampered by upstream-located wells indicating strong (18)O enrichment in groundwater samples. However, rough groundwater ages were estimated. For both study sites, Piston flow ages between 12.9 and 27.7 years were calculated. The investigations showed the good agreement between two different environmental dating tools, considering the marginal data sets.
Assuntos
Água Doce/análise , Isótopos/análise , Mineração , Datação Radiométrica , Hexafluoreto de Enxofre/análise , Abastecimento de Água/análise , Cronologia como Assunto , Deutério/análise , Monitoramento Ambiental , Água Doce/química , Alemanha , Isótopos de Oxigênio/análise , Trítio/análise , Abastecimento de Água/normasRESUMO
Internationally distributed organic and inorganic oxygen isotopic reference materials have been calibrated by six laboratories carrying out more than 5300 measurements using a variety of high-temperature conversion techniques (HTC)a in an evaluation sponsored by the International Union of Pure and Applied Chemistry (IUPAC). To aid in the calibration of these reference materials, which span more than 125 per thousand, an artificially enriched reference water (delta(18)O of +78.91 per thousand) and two barium sulfates (one depleted and one enriched in (18)O) were prepared and calibrated relative to VSMOW2b and SLAP reference waters. These materials were used to calibrate the other isotopic reference materials in this study, which yielded: Reference material delta(18)O and estimated combined uncertainty IAEA-602 benzoic acid+71.28 +/- 0.36 per thousand USGS 35 sodium nitrate+56.81 +/- 0.31 per thousand IAEA-NO-3 potassium nitrate+25.32 +/- 0.29 per thousand IAEA-601 benzoic acid+23.14 +/- 0.19 per thousand IAEA-SO-5 barium sulfate+12.13 +/- 0.33 per thousand NBS 127 barium sulfate+8.59 +/- 0.26 per thousand VSMOW2 water 0 per thousand IAEA-600 caffeine-3.48 +/- 0.53 per thousand IAEA-SO-6 barium sulfate-11.35 +/- 0.31 per thousand USGS 34 potassium nitrate-27.78 +/- 0.37 per thousand SLAP water-55.5 per thousand The seemingly large estimated combined uncertainties arise from differences in instrumentation and methodology and difficulty in accounting for all measurement bias. They are composed of the 3-fold standard errors directly calculated from the measurements and provision for systematic errors discussed in this paper. A primary conclusion of this study is that nitrate samples analyzed for delta(18)O should be analyzed with internationally distributed isotopic nitrates, and likewise for sulfates and organics. Authors reporting relative differences of oxygen-isotope ratios (delta(18)O) of nitrates, sulfates, or organic material should explicitly state in their reports the delta(18)O values of two or more internationally distributed nitrates (USGS 34, IAEA-NO-3, and USGS 35), sulfates (IAEA-SO-5, IAEA-SO-6, and NBS 127), or organic material (IAEA-601 benzoic acid, IAEA-602 benzoic acid, and IAEA-600 caffeine), as appropriate to the material being analyzed, had these reference materials been analyzed with unknowns. This procedure ensures that readers will be able to normalize the delta(18)O values at a later time should it become necessary.The high-temperature reduction technique for analyzing delta(18)O and delta(2)H is not as widely applicable as the well-established combustion technique for carbon and nitrogen stable isotope determination. To obtain the most reliable stable isotope data, materials should be treated in an identical fashion; within the same sequence of analyses, samples should be compared with working reference materials that are as similar in nature and in isotopic composition as feasible.
Assuntos
Temperatura Alta , Laboratórios/normas , Espectrometria de Massas/métodos , Nitratos/química , Isótopos de Oxigênio/química , Sulfatos/química , Calibragem , Padrões de Referência , Reprodutibilidade dos TestesRESUMO
We applied the dual isotope system (delta(34)S-delta(18)O--SO4(2-)) to investigate the relevance of bacterial sulfate reduction (BSR) for natural biodegradation in an anaerobic, sulfate rich aquifer contaminated with petroleum hydrocarbons. Isotope fractionation parameters were determined in column experiments operated under near in situ conditions at the site of the contaminated aquifer. Using those fractionation parameters as a reference, we showed that differences between field derived and ex perimental fractionation parameters provide essential information on the determination of secondary sulfur trans formation processes superimposing BSR and competing with the actual biodegradation reactions. Most important of those processes is the reoxidation of reduced sulfur species consuming electron acceptors that would be relevant for contaminant oxidation. Furthermore,the detailed, flow path related analysis of the sulfate isotope distribution pattern revealed that BSR and consequently biodegradation is predominately occurring in hot spots. It also showed the occurrence of sharp hydrochemical gradients that change the natural attenuation potential of the aquifer over a very short distance. Generally, this hydrochemical heterogeneity limits the applicability of isotope investigation for quantifying bacterial sulfate reduction. Nevertheless, the identification of sulfate reducing hot spots and hydrochemical gradients as well as the recognition of geochemical processes competing for electron acceptors are essential to understand natural attenuation of contaminants in aquifers.
Assuntos
Fracionamento Químico/métodos , Enxofre/isolamento & purificação , Poluentes da Água/isolamento & purificação , Água/química , Benzeno/metabolismo , Biodegradação Ambiental , Reatores Biológicos , Oxirredução , Isótopos de Oxigênio , Solo , Sulfatos/metabolismo , Isótopos de Enxofre , Bactérias Redutoras de Enxofre/metabolismo , Abastecimento de ÁguaRESUMO
The determination of isotope ratios of non-exchangeable hydrogen in tree-ring cellulose is commonly based on the nitration of wood cellulose followed by online high-temperature pyrolysis and isotope ratio mass spectrometry measurement of cellulose nitrate samples. The application of this method requires a proper calibration using appropriate reference materials whose delta(2)H values have been reliably normalized to the V-SMOW/SLAP scale. In our study, we achieve this normalization by a direct alternating measurement of reference waters (V-SMOW and SLAP) and three cellulose nitrates chosen as reference materials. For that purpose, both water and solid organic samples are introduced into the pyrolysis reactor by silver capsule injection. The analytical precision of the water measurement using the capsule method is +/-1.5 per thousand. The hydrogen isotopic composition of three cellulose nitrate standards measured ranges from -106.7 to -53.9 per thousand. The standard deviation of the calculated means from five measurement periods of those standards is better than 1 per thousand. Twenty-four different measurements of the hydrogen isotope composition of cellulose nitrate were evaluated in order to assess the precision of the described method. We obtained an analytical precision of +/-3.0 per thousand as representative for the 95% confidence interval applicable for routine measurements of cellulose nitrate samples. Evidence was found for significant differences in the behavior of cellulose nitrate and PE foil during the pyrolitic conversion that emphasizes the need for a proper calibration of the routine measurements. This calibration can only be successful if the reference materials used have a very similar chemical composition and undergo the same preparation procedure as the samples.
Assuntos
Colódio/análise , Colódio/química , Espectrometria de Massas/métodos , Espectrometria de Massas/normas , Água/química , Alemanha , Temperatura Alta , Marcação por Isótopo/métodos , Marcação por Isótopo/normas , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
In this study, we used isotopic (delta18O, delta2H, delta34S-SO4) and chemical tracers (boron) to assess the sources and transport processes of the micropollutants carbamazepine, galaxolide, and bisphenol A in groundwater underlying the city of Halle (Saale), Germany. Their ubiquitous presence in urban groundwater results from a combination of local river water infiltration, sewer exfiltration, and urban stormwater recharge. Attenuation during transport with infiltrating river water increased from carbamazepine (0-60%) to galaxolide (60-80%) in accordance with their increasing sorption affinity and decreasing recalcitrance against biodegradation. Distinctly higher attenuation during transport was found for carbamazepine (85-100%) and galaxolide (95-100%) if micropollutants originated from sewer exfiltration. Most likely, this is related to higher contents of organic matter and higher transit times of the respective flow paths. Although attenuation undoubtedly also affects the transport of bisphenol A, quantification is limited due to additional contributions from the urban stormwater recharge. As a consequence, micropollutant loads in groundwater indicate that groundwater discharge may dominate the export of bisphenol A from urban areas.
Assuntos
Benzopiranos/análise , Carbamazepina/análise , Fenóis/análise , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Compostos Benzidrílicos , Boro/análise , Cidades , Deutério/análise , Monitoramento Ambiental , Alemanha , Isótopos de Oxigênio/análise , Sulfatos/análise , Isótopos de Enxofre/análise , Movimentos da ÁguaRESUMO
Interlaboratory comparisons involving nine European stable isotope laboratories have shown that the routine methods of cellulose preparation resulted in data that generally agreed within the precision of the isotope ratio mass spectrometry (IRMS) method used: +/-0.2 per thousand for carbon and +/-0.3 per thousand for oxygen. For carbon, the results suggest that holocellulose is enriched up to 0.39 per thousand in 13C relative to the purified alpha-cellulose. The comparisons of IRMS measurements of carbon on cellulose, sugars, and starches showed low deviations from -0.23 to +0.23 per thousand between laboratories. For oxygen, IRMS measurements varied between means from -0.39 to 0.58 per thousand, -0.89 to 0.42 per thousand, and -1.30 to 1.16 per thousand for celluloses, sugars, and starches, respectively. This can be explained by different effects arising from the use of low- or high-temperature pyrolysis and by the variation between laboratories in the procedures used for drying and storage of samples. The results of analyses of nonexchangeable hydrogen are very similar in means with standard deviations between individual methods from +/-2.7 to +/-4.9 per thousand. The use of a one-point calibration (IAEA-CH7) gave significant positive offsets in delta2H values up to 6 per thousand. Detailed analysis of the results allows us to make the following recommendations in order to increase quality and compatibility of the common data bank: (1) removal of a pretreatment with organic solvents, (2) a purification step with 17% sodium hydroxide solution during cellulose preparation procedure, (3) measurements of oxygen isotopes under an argon hood, (4) use of calibration standard materials, which are of similar nature to that of the measured samples, and (5) using a two-point calibration method for reliable result calculation.
Assuntos
Carboidratos/análise , Celulose/análise , Isótopos/análise , Espectrometria de Massas/métodos , Amido/análise , Madeira , Calibragem , Isótopos de Carbono/análise , Celulose/química , Deutério/análise , Compostos Orgânicos/química , Isótopos de Oxigênio/análise , Hidróxido de Sódio/química , Solventes/química , TemperaturaRESUMO
We present the results of an isotope (2H and 18O) and hydrogeochemical study in order to constrain the origin, recharge, and evolution of the surface and groundwater in the arid Andean realm of the Elqui watershed. The results of 2H and18O analyses of water samples obtained during our summer and winter campaigns indicate a generally meteoric origin of the river and spring waters of the watershed. The isotope signature of water of the Elqui river and its tributaries as well as that of groundwater in the coastal region fits the 2H-18O relation of delta2H =7.61delta18O+6.1. A relatively fast discharge and a quasi-closed catchment area can be asserted for water along the river flow path. The tributaries from the more arid coastal area, north of the Elqui river, differ in their isotopic signature due to evaporation and hydrochemically due to interactions with the strongly altered and fractured volcanic rocks of the basement. In the Andean zone, the18O-enriched hydrothermal spring of Baños del Toro exhibits the influence of water-rock interaction processes. The chemistry of the river water changes from sulphate- to chloride-rich along the river course from the high Andean mountains to the coast. The sulphate-rich character of these Andean waters reflects their passage through sulphide-rich rock massifs that were subjected to strong oxidation processes in the near superficial environment. This sulphate signature is enforced by past and present mining of precious metal epithermal deposits (e.g. those of El Indio-Tambo Au-Cu-As district), in which mineralised zones were developed during a series of Miocene magmatic-hydrothermal episodes in the Andean realm. Owing to the proximity of the lower Elqui river waters and its tributaries to the Pacific coast, the chloride character may be induced by agricultural and marine (sea spray, fog) sources. Generally, the main source of the Elqui river water is mainly attributed to surface runoff and less to contributions from the basement fractured aquifer.
Assuntos
Deutério/análise , Água Doce/química , Isótopos de Oxigênio/análise , Rios/química , Chile , Cloretos/análise , Meio Ambiente , Sulfatos/análise , Movimentos da ÁguaRESUMO
We examined the oxygen and sulfur isotope fractionation of sulfate during anaerobic degradation of toluene by sulfate-reducing bacteria in culture experiments with Desulfobacula toluolica as a type strain and with an enrichment culture Zz5-7 obtained from a benzene, toluene, ethylbenzene, and xylene (BTEX)-contaminated aquifer. Sulfur isotope fractionation can show considerable variation upon sulfate reduction and may react extremely sensitively to changes in environmental conditions. In contrast, oxygen isotope fractionation seems to be less sensitive to environmental changes. Our results clearly indicate that oxygen isotope fractionation is dominated by isotope exchange with ambient water. To verify our experimental results and to test the applicability of oxygen and sulfur isotope investigations under realistic field conditions, we evaluated isotope data from two BTEX-contaminated aquifers presented in the recent literature. On a field scale, bacterial sulfate reduction may be superimposed by processes such as dispersion, adsorption, reoxidation, or mixing. The dual isotope approach enables the identification of such sulfur transformation processes. This identification is vital for a general qualitative evaluation of the natural attenuation potential of the contaminated aquifer.
Assuntos
Deltaproteobacteria/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Isótopos de Oxigênio/análise , Sulfatos/metabolismo , Isótopos de Enxofre/análise , Poluentes Químicos da Água/metabolismo , Benzeno/metabolismo , Derivados de Benzeno/metabolismo , Biodegradação Ambiental , Água Doce/química , Bactérias Redutoras de Enxofre/metabolismo , Tolueno/metabolismo , Xilenos/metabolismoRESUMO
Even though the recent development in on-line methods for the stable isotope determination in cellulose has led to a significant increase in sample throughput and decrease in sample preparation expenditure, there still is a large potential for optimizing the analytical procedures by simultaneously measuring the isotope ratios of two or even more elements. Therefore, the main objective of this study was to answer the question whether high-temperature pyrolysis (HTP) is a suitable and reliable technique for the determination of the carbon isotopic composition of cellulose simultaneously during the well-known conventional oxygen isotope analysis. This study shows that HTP of cellulose is a technique that can produce reasonable delta(13)C values, matching the requirements of most research problems related to paleoclimatology. The reproducibility of the delta values for (13)C/(12)C is better than 0.2 per thousand. Some deficiencies of the method are related to the incomplete conversion of the organic carbon in the sample to carbon monoxide. A clear isotope effect seems to be related to the non-statistical conversion of the carbon in the cellulose to CO. The extent of this effect appears to be controlled by the relative proportion of crystallized and amorphous matter in the cellulose structure. Those deficiencies can be eliminated by using an appropriate normalization and by applying the principles of identical treatment for reference materials and samples. In general, a very good agreement is achieved for carbon isotope values determined by HTP and elemental analysis (EA).