RESUMO
We introduce a visual analysis method for multiple causal graphs with different outcome variables, namely, multi-outcome causal graphs. Multi-outcome causal graphs are important in healthcare for understanding multimorbidity and comorbidity. To support the visual analysis, we collaborated with medical experts to devise two comparative visualization techniques at different stages of the analysis process. First, a progressive visualization method is proposed for comparing multiple state-of-the-art causal discovery algorithms. The method can handle mixed-type datasets comprising both continuous and categorical variables and assist in the creation of a fine-tuned causal graph of a single outcome. Second, a comparative graph layout technique and specialized visual encodings are devised for the quick comparison of multiple causal graphs. In our visual analysis approach, analysts start by building individual causal graphs for each outcome variable, and then, multi-outcome causal graphs are generated and visualized with our comparative technique for analyzing differences and commonalities of these causal graphs. Evaluation includes quantitative measurements on benchmark datasets, a case study with a medical expert, and expert user studies with real-world health research data.
RESUMO
Scatter plots are popular for displaying 2D data, but in practice, many data sets have more than two dimensions. For the analysis of such multivariate data, it is often necessary to switch between scatter plots of different dimension pairs, e.g., in a scatter plot matrix (SPLOM). Alternative approaches include a "grand tour" for an overview of the entire data set or creating artificial axes from dimensionality reduction (DR). A cross-cutting concern in all techniques is the ability of viewers to find correspondence between data points in different views. Previous work proposed animations to preserve the mental map between view changes and to trace points as well as clusters between scatter plots of the same underlying data set. In this article, we evaluate a variety of spline- and rotation-based view transitions in a crowdsourced user study focusing on ecological validity. Using the study results, we assess each animation's suitability for tracing points and clusters across view changes. We evaluate whether the order of horizontal and vertical rotation is relevant for task accuracy. The results show that rotations with an orthographic camera or staged expansion of a depth axis significantly outperform all other animation techniques for the traceability of individual points. Further, we provide a ranking of the animated transition techniques for traceability of individual points. However, we could not find any significant differences for the traceability of clusters. Furthermore, we identified differences by animation direction that could guide further studies to determine potential confounds for these differences. We publish the study data for reuse and provide the animation framework as a D3.js plug-in.
RESUMO
Areas of interest (AOIs) are well-established means of providing semantic information for visualizing, analyzing, and classifying gaze data. However, the usual manual annotation of AOIs is time-consuming and further impaired by ambiguities in label assignments. To address these issues, we present an interactive labeling approach that combines visualization, machine learning, and user-centered explainable annotation. Our system provides uncertainty-aware visualization to build trust in classification with an increasing number of annotated examples. It combines specifically designed EyeFlower glyphs, dimensionality reduction, and selection and exploration techniques in an integrated workflow. The approach is versatile and hardware-agnostic, supporting video stimuli from stationary and unconstrained mobile eye tracking alike. We conducted an expert review to assess labeling strategies and trust building.
RESUMO
Seasonal-trend decomposition based on loess (STL) is a powerful tool to explore time series data visually. In this paper, we present an extension of STL to uncertain data, named uncertainty-aware STL (UASTL). Our method propagates multivariate Gaussian distributions mathematically exactly through the entire analysis and visualization pipeline. Thereby, stochastic quantities shared between the components of the decomposition are preserved. Moreover, we present application scenarios with uncertainty modeling based on Gaussian processes, e.g., data with uncertain areas or missing values. Besides these mathematical results and modeling aspects, we introduce visualization techniques that address the challenges of uncertainty visualization and the problem of visualizing highly correlated components of a decomposition. The global uncertainty propagation enables the time series visualization with STL-consistent samples, the exploration of correlation between and within decomposition's components, and the analysis of the impact of varying uncertainty. Finally, we show the usefulness of UASTL and the importance of uncertainty visualization with several examples. Thereby, a comparison with conventional STL is performed.
RESUMO
We introduce relaxed dot plots as an improvement of nonlinear dot plots for unit visualization. Our plots produce more faithful data representations and reduce moiré effects. Their contour is based on a customized kernel frequency estimation to match the shape of the distribution of underlying data values. Previous nonlinear layouts introduce column-centric nonlinear scaling of dot diameters for visualization of high-dynamic-range data with high peaks. We provide a mathematical approach to convert that column-centric scaling to our smooth envelope shape. This formalism allows us to use linear, root, and logarithmic scaling to find ideal dot sizes. Our method iteratively relaxes the dot layout for more correct and aesthetically pleasing results. To achieve this, we modified Lloyd's algorithm with additional constraints and heuristics. We evaluate the layouts of relaxed dot plots against a previously existing nonlinear variant and show that our algorithm produces less error regarding the underlying data while establishing the blue noise property that works against moiré effects. Further, we analyze the readability of our relaxed plots in three crowd-sourced experiments. The results indicate that our proposed technique surpasses traditional dot plots.
RESUMO
Frequency-based decomposition of time series data is used in many visualization applications. Most of these decomposition methods (such as Fourier transform or singular spectrum analysis) only provide interaction via pre- and post-processing, but no means to influence the core algorithm. A method that also belongs to this class is Dynamic Mode Decomposition (DMD), a spectral decomposition method that extracts spatio-temporal patterns from data. In this paper, we incorporate frequency-based constraints into DMD for an adaptive decomposition that leads to user-controllable visualizations, allowing analysts to include their knowledge into the process. To accomplish this, we derive an equivalent reformulation of DMD that implicitly provides access to the eigenvalues (and therefore to the frequencies) identified by DMD. By utilizing a constrained minimization problem customized to DMD, we can guarantee the existence of desired frequencies by minimal changes to DMD. We complement this core approach by additional techniques for constrained DMD to facilitate explorative visualization and investigation of time series data. With several examples, we demonstrate the usefulness of constrained DMD and compare it to conventional frequency-based decomposition methods.
RESUMO
This work investigates and compares the performance of node-link diagrams, adjacency matrices, and bipartite layouts for visualizing networks. In a crowd-sourced user study ( n=150), we measure the task accuracy and completion time of the three representations for different network classes and properties. In contrast to the literature, which covers mostly topology-based tasks (e.g., path finding) in small datasets, we mainly focus on overview tasks for large and directed networks. We consider three overview tasks on networks with 500 nodes: (T1) network class identification, (T2) cluster detection, and (T3) network density estimation, and two detailed tasks: (T4) node in-degree vs. out-degree and (T5) representation mapping, on networks with 50 and 20 nodes, respectively. Our results show that bipartite layouts are beneficial for revealing the overall network structure, while adjacency matrices are most reliable across the different tasks.
RESUMO
We present an extension of multidimensional scaling (MDS) to uncertain data, facilitating uncertainty visualization of multidimensional data. Our approach uses local projection operators that map high-dimensional random vectors to low-dimensional space to formulate a generalized stress. In this way, our generic model supports arbitrary distributions and various stress types. We use our uncertainty-aware multidimensional scaling (UAMDS) concept to derive a formulation for the case of normally distributed random vectors and a squared stress. The resulting minimization problem is numerically solved via gradient descent. We complement UAMDS by additional visualization techniques that address the sensitivity and trustworthiness of dimensionality reduction under uncertainty. With several examples, we demonstrate the usefulness of our approach and the importance of uncertainty-aware techniques.
RESUMO
This paper provides an overview of uncertainty visualization in general, along with specific examples of applications in bioinformatics. Starting from a processing and interaction pipeline of visualization, components are discussed that are relevant for handling and visualizing uncertainty introduced with the original data and at later stages in the pipeline, which shows the importance of making the stages of the pipeline aware of uncertainty and allowing them to propagate uncertainty. We detail concepts and methods for visual mappings of uncertainty, distinguishing between explicit and implict representations of distributions, different ways to show summary statistics, and combined or hybrid visualizations. The basic concepts are illustrated for several examples of graph visualization under uncertainty. Finally, this review paper discusses implications for the visualization of biological data and future research directions.
RESUMO
Modern machines continuously log status reports over long periods of time, which are valuable data to optimize working routines. Data visualization is a commonly used tool to gain insights into these data, mostly in retrospective (e.g., to determine causal dependencies between the faults of different machines). We present an approach to bring such visual analyses to the shop floor to support reacting to faults in real time. This approach combines spatio-temporal analyses of time series using a handheld touch device with augmented reality for live monitoring. Important information augments machines directly in their real-world context, and detailed logs of current and historical events are displayed on the handheld device. In collaboration with an industry partner, we designed and tested our approach on a live production line to obtain feedback from operators. We compare our approach for monitoring and analysis with existing solutions that are currently deployed.
Assuntos
Realidade Aumentada , Comércio , Retroalimentação , Indústrias , Estudos RetrospectivosRESUMO
Our built world is one of the most important factors for a livable future, accounting for massive impact on resource and energy use, as well as climate change, but also the social and economic aspects that come with population growth. The architecture, engineering, and construction industry is facing the challenge that it needs to substantially increase its productivity, let alone the quality of buildings of the future. In this article, we discuss these challenges in more detail, focusing on how digitization can facilitate this transformation of the industry, and link them to opportunities for visualization and augmented reality research. We illustrate solution strategies for advanced building systems based on wood and fiber.
Assuntos
Indústria da Construção , Engenharia , PrevisõesRESUMO
We introduce a conceptual model for scalability designed for visualization research. With this model, we systematically analyze over 120 visualization publications from 1990 to 2020 to characterize the different notions of scalability in these works. While many papers have addressed scalability issues, our survey identifies a lack of consistency in the use of the term in the visualization research community. We address this issue by introducing a consistent terminology meant to help visualization researchers better characterize the scalability aspects in their research. It also helps in providing multiple methods for supporting the claim that a work is "scalable." Our model is centered around an effort function with inputs and outputs. The inputs are the problem size and resources, whereas the outputs are the actual efforts, for instance, in terms of computational run time or visual clutter. We select representative examples to illustrate different approaches and facets of what scalability can mean in visualization literature. Finally, targeting the diverse crowd of visualization researchers without a scalability tradition, we provide a set of recommendations for how scalability can be presented in a clear and consistent way to improve fair comparison between visualization techniques and systems and foster reproducibility.
RESUMO
Importance. Medical images are essential for modern medicine and an important research subject in visualization. However, medical experts are often not aware of the many advanced three-dimensional (3D) medical image visualization techniques that could increase their capabilities in data analysis and assist the decision-making process for specific medical problems. Our paper provides a review of 3D visualization techniques for medical images, intending to bridge the gap between medical experts and visualization researchers.Highlights. Fundamental visualization techniques are revisited for various medical imaging modalities, from computational tomography to diffusion tensor imaging, featuring techniques that enhance spatial perception, which is critical for medical practices. The state-of-the-art of medical visualization is reviewed based on a procedure-oriented classification of medical problems for studies of individuals and populations. This paper summarizes free software tools for different modalities of medical images designed for various purposes, including visualization, analysis, and segmentation, and it provides respective Internet links.Conclusions. Visualization techniques are a useful tool for medical experts to tackle specific medical problems in their daily work. Our review provides a quick reference to such techniques given the medical problem and modalities of associated medical images. We summarize fundamental techniques and readily available visualization tools to help medical experts to better understand and utilize medical imaging data. This paper could contribute to the joint effort of the medical and visualization communities to advance precision medicine.
RESUMO
In this paper, we introduce a visual analytics approach aimed at helping machine learning experts analyze the hidden states of layers in recurrent neural networks. Our technique allows the user to interactively inspect how hidden states store and process information throughout the feeding of an input sequence into the network. The technique can help answer questions, such as which parts of the input data have a higher impact on the prediction and how the model correlates each hidden state configuration with a certain output. Our visual analytics approach comprises several components: First, our input visualization shows the input sequence and how it relates to the output (using color coding). In addition, hidden states are visualized through a nonlinear projection into a 2-D visualization space using t-distributed stochastic neighbor embedding to understand the shape of the space of the hidden states. Trajectories are also employed to show the details of the evolution of the hidden state configurations. Finally, a time-multi-class heatmap matrix visualizes the evolution of the expected predictions for multi-class classifiers, and a histogram indicates the distances between the hidden states within the original space. The different visualizations are shown simultaneously in multiple views and support brushing-and-linking to facilitate the analysis of the classifications and debugging for misclassified input sequences. To demonstrate the capability of our approach, we discuss two typical use cases for long short-term memory models applied to two widely used natural language processing datasets.
RESUMO
BACKGROUND/AIM: To date, multiple different surgical techniques have been established for hallux valgus surgery, with each technique having its unique advantages and limitations. The open distal chevron osteotomy is widely accepted, but increasing patient demands have led several minimally invasive (MIS) techniques to be described in recent years. The aim of this study was to compare outcomes after minimally invasive (MIS) distal chevron osteotomy and the minimally invasive Reverdin-Isham method. PATIENTS AND METHODS: We assessed clinical and radiographic outcomes after MIS chevron osteotomy in 57 feet of 49 consecutive patients with a mean follow-up of 58.9 (range=39.0-85.4) months. Outcomes after MIS Reverdin-Isham osteotomy were analyzed by means of a systematic literature review with a minimum follow-up of 6 months. RESULTS: Radiographic outcomes were significantly better in the MIS chevron cohort for intermetatarsal angle (p<0.001), hallux valgus angle and distal metacarpal articular angle (p<0.05). Concerning clinical outcomes, both methods provided comparable improvement. CONCLUSION: MIS distal chevron osteotomy in mild to moderate hallux valgus deformity correction results in superior radiographic outcomes compared to the MIS Reverdin-Isham osteotomy. Sufficient correction of IMA cannot be achieved with the MIS Reverdin-Isham osteotomy.
Assuntos
Hallux Valgus , Estudos de Coortes , Hallux Valgus/diagnóstico por imagem , Hallux Valgus/cirurgia , Humanos , Osteotomia , Resultado do TratamentoRESUMO
The concept of biological age (BA) - although important in clinical practice - is hard to grasp mainly due to the lack of a clearly defined reference standard. For specific applications, especially in pediatrics, medical image data are used for BA estimation in a routine clinical context. Beyond this young age group, BA estimation is mostly restricted to whole-body assessment using non-imaging indicators such as blood biomarkers, genetic and cellular data. However, various organ systems may exhibit different aging characteristics due to lifestyle and genetic factors. Thus, a whole-body assessment of the BA does not reflect the deviations of aging behavior between organs. To this end, we propose a new imaging-based framework for organ-specific BA estimation. In this initial study we focus mainly on brain MRI. As a first step, we introduce a chronological age (CA) estimation framework using deep convolutional neural networks (Age-Net). We quantitatively assess the performance of this framework in comparison to existing state-of-the-art CA estimation approaches. Furthermore, we expand upon Age-Net with a novel iterative data-cleaning algorithm to segregate atypical-aging patients (BA [Formula: see text] CA) from the given population. We hypothesize that the remaining population should approximate the true BA behavior. We apply the proposed methodology on a brain magnetic resonance image (MRI) dataset containing healthy individuals as well as Alzheimer's patients with different dementia ratings. We demonstrate the correlation between the predicted BAs and the expected cognitive deterioration in Alzheimer's patients. A statistical and visualization-based analysis has provided evidence regarding the potential and current challenges of the proposed methodology.
Assuntos
Envelhecimento , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Criança , Humanos , Redes Neurais de ComputaçãoRESUMO
We propose a visualization method to understand the effect of multidimensional projection on local subspaces, using implicit function differentiation. Here, we understand the local subspace as the multidimensional local neighborhood of data points. Existing methods focus on the projection of multidimensional data points, and the neighborhood information is ignored. Our method is able to analyze the shape and directional information of the local subspace to gain more insights into the global structure of the data through the perception of local structures. Local subspaces are fitted by multidimensional ellipses that are spanned by basis vectors. An accurate and efficient vector transformation method is proposed based on analytical differentiation of multidimensional projections formulated as implicit functions. The results are visualized as glyphs and analyzed using a full set of specifically-designed interactions supported in our efficient web-based visualization tool. The usefulness of our method is demonstrated using various multi- and high-dimensional benchmark datasets. Our implicit differentiation vector transformation is evaluated through numerical comparisons; the overall method is evaluated through exploration examples and use cases.
RESUMO
Causality is crucial to understanding the mechanisms behind complex systems and making decisions that lead to intended outcomes. Event sequence data is widely collected from many real-world processes, such as electronic health records, web clickstreams, and financial transactions, which transmit a great deal of information reflecting the causal relations among event types. Unfortunately, recovering causalities from observational event sequences is challenging, as the heterogeneous and high-dimensional event variables are often connected to rather complex underlying event excitation mechanisms that are hard to infer from limited observations. Many existing automated causal analysis techniques suffer from poor explainability and fail to include an adequate amount of human knowledge. In this paper, we introduce a visual analytics method for recovering causalities in event sequence data. We extend the Granger causality analysis algorithm on Hawkes processes to incorporate user feedback into causal model refinement. The visualization system includes an interactive causal analysis framework that supports bottom-up causal exploration, iterative causal verification and refinement, and causal comparison through a set of novel visualizations and interactions. We report two forms of evaluation: a quantitative evaluation of the model improvements resulting from the user-feedback mechanism, and a qualitative evaluation through case studies in different application domains to demonstrate the usefulness of the system.
RESUMO
Abstract-We propose a data-driven space-filling curve method for 2D and 3D visualization. Our flexible curve traverses the data elements in the spatial domain in a way that the resulting linearization better preserves features in space compared to existing methods. We achieve such data coherency by calculating a Hamiltonian path that approximately minimizes an objective function that describes the similarity of data values and location coherency in a neighborhood. Our extended variant even supports multiscale data via quadtrees and octrees. Our method is useful in many areas of visualization including multivariate or comparative visualization ensemble visualization of 2D and 3D data on regular grids or multiscale visual analysis of particle simulations. The effectiveness of our method is evaluated with numerical comparisons to existing techniques and through examples of ensemble and multivariate datasets.
RESUMO
Simulations of cosmic evolution are a means to explain the formation of the universe as we see it today. The resulting data of such simulations comprise numerous physical quantities, which turns their analysis into a complex task. Here, we analyze such high-dimensional and time-varying particle data using various visualization techniques from the fields of particle visualization, flow visualization, volume visualization, and information visualization. Our approach employs specialized filters to extract and highlight the development of so-called active galactic nuclei and filament structures formed by the particles. Additionally, we calculate X-ray emission of the evolving structures in a preprocessing step to complement visual analysis. Our approach is integrated into a single visual analytics framework to allow for analysis of star formation at interactive frame rates. Finally, we lay out the methodological aspects of our work that led to success at the 2019 IEEE SciVis Contest.