Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Proc Natl Acad Sci U S A ; 115(13): 3398-3403, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29540568

RESUMO

Plant nitrogen (N) use is a key component of the N cycle in terrestrial ecosystems. The supply of N to plants affects community species composition and ecosystem processes such as photosynthesis and carbon (C) accumulation. However, the availabilities and relative importance of different N forms to plants are not well understood. While nitrate (NO3-) is a major N form used by plants worldwide, it is discounted as a N source for Arctic tundra plants because of extremely low NO3- concentrations in Arctic tundra soils, undetectable soil nitrification, and plant-tissue NO3- that is typically below detection limits. Here we reexamine NO3- use by tundra plants using a sensitive denitrifier method to analyze plant-tissue NO3- Soil-derived NO3- was detected in tundra plant tissues, and tundra plants took up soil NO3- at comparable rates to plants from relatively NO3--rich ecosystems in other biomes. Nitrate assimilation determined by 15N enrichments of leaf NO3- relative to soil NO3- accounted for 4 to 52% (as estimated by a Bayesian isotope-mixing model) of species-specific total leaf N of Alaskan tundra plants. Our finding that in situ soil NO3- availability for tundra plants is high has important implications for Arctic ecosystems, not only in determining species compositions, but also in determining the loss of N from soils via leaching and denitrification. Plant N uptake and soil N losses can strongly influence C uptake and accumulation in tundra soils. Accordingly, this evidence of NO3- availability in tundra soils is crucial for predicting C storage in tundra.


Assuntos
Nitratos/metabolismo , Nitrogênio/análise , Folhas de Planta/metabolismo , Solo/química , Tundra , Desnitrificação , Folhas de Planta/crescimento & desenvolvimento
3.
Ecology ; 96(10): 2653-68, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26649387

RESUMO

Seasonal patterns of stream nitrate concentration have long been interpreted as demonstrating the central role of plant uptake in regulating stream nitrogen loss from forested catchments. Soil processes are rarely considered as important drivers of these patterns. We examined seasonal variation in N retention in a deciduous forest using three whole-ecosystem 15N tracer additions: in late April (post-snowmelt, pre-leaf-out), late July (mid-growing- season), and late October (end of leaf-fall). We expected that plant 15N uptake would peak in late spring and midsummer, that immobilization in surface litter and soil would peak the following autumn leaf-fall, and that leaching losses would vary inversely with 15N retention. Similar to most other 15N tracer studies, we found that litter and soils dominated ecosystem retention of added 15N. However, 15N recovery in detrital pools varied tremendously by season, with > 90% retention in spring and autumn and sharply reduced 15N retention in late summer. During spring, over half of the 15N retained in soil occurred within one day in the heavy (mineral-associated) soil fraction. During summer, a large decrease in 15N retention one week after addition coincided with increased losses of 15NO3- to soil leachate and seasonal increases in soil and stream NO3- concentrations, although leaching accounted for only a small fraction of the lost 15N (< 0.2%). Uptake of 15N into roots did not vary by season and accounted for < 4% of each tracer addition. Denitrification or other processes that lead to N gas loss may have consumed the rest. These measurements of 15N movement provide strong evidence for the dominant role of soil processes in regulating seasonal N retention and losses in this catchment and perhaps others with similar soils.


Assuntos
Florestas , Nitrogênio/química , Estações do Ano , Solo/química , Carbono/química , Monitoramento Ambiental , Isótopos de Nitrogênio , Fatores de Tempo , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA