Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(3): 4899-4919, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785446

RESUMO

Photon echoes in rare-earth-doped crystals are studied to understand the challenges of making broadband quantum memories using the atomic frequency comb (AFC) protocol in systems with hyperfine structure. The hyperfine structure of Pr3+ poses an obstacle to this goal because frequencies associated with the hyperfine transitions change the simple picture of modulation at an externally imposed frequency. The current work focuses on the intermediate case where the hyperfine spacing is comparable to the comb spacing, a challenging regime that has recently been considered. Operating in this regime may facilitate storing quantum information over a larger spectral range in such systems. In this work, we prepare broadband AFCs using optical combs with tooth spacings ranging from 1 MHz to 16 MHz in fine steps, and measure transmission spectra and photon echoes for each. We predict the spectra and echoes theoretically using the optical combs as input to either a rate equation code or a density matrix code, which calculates the redistribution of populations. We then use the redistributed populations as input to a semiclassical theory using the frequency-dependent dielectric function. The two sets of predictions each give a good, but different account of the photon echoes.

2.
Phys Rev E ; 104(5): L052601, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942692

RESUMO

In established theories of grain coarsening, grains disappear either by shrinking or by rotating as a rigid object to coalesce with an adjacent grain. Here we report a third mechanism for grain coarsening, in which a grain splits apart into two regions that rotate in opposite directions to match two adjacent grains' orientations. We experimentally observe both conventional grain rotation and grain splitting in two-dimensional colloidal polycrystals. We find that grain splitting occurs via independently rotating "granules" whose shapes are determined by the underlying triangular lattices of the two merging crystal grains. These granules are so small that existing continuum theories of grain boundary energy are inapplicable, so we introduce a hard sphere model for the free energy of a colloidal polycrystal. We find that, during splitting, the system overcomes a free energy barrier before ultimately reaching a lower free energy when splitting is complete. Using simulated splitting events and a simple scaling prediction, we find that the barrier to grain splitting decreases as grain size decreases. Consequently, grain splitting is likely to play an important role in polycrystals with small grains. This discovery suggests that mesoscale models of grain coarsening may offer better predictions in the nanocrystalline regime by including grain splitting.

3.
Phys Rev Lett ; 120(1): 018002, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29350950

RESUMO

We find that laser-induced local melting attracts and deforms grain boundaries in 2D colloidal crystals. When a melted region in contact with the edge of a crystal grain recrystallizes, it deforms the grain boundary-this attraction is driven by the multiplicity of deformed grain boundary configurations. Furthermore, the attraction provides a method to fabricate artificial colloidal crystal grains of arbitrary shape, enabling new experimental studies of grain boundary dynamics and ultimately hinting at a novel approach for fabricating materials with designer microstructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA