Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lab Chip ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037291

RESUMO

Recently, there has been an increasing emphasis on single cell profiling for high-throughput screening workflows in drug discovery and life sciences research. However, the biology underpinning these screens is often complex and is insufficiently addressed by singleplex assay screens. Traditional single cell screening technologies have created powerful sets of 'omic data that allow users to bioinformatically infer biological function, but have as of yet not empowered direct functional analysis at the level of each individual cell. Consequently, screening campaigns often require multiple secondary screens leading to laborious, time-consuming and expensive workflows in which attrition points may not be queried until late in the process. We describe a platform that harnesses droplet microfluidics and optical electrowetting-on-dielectric (oEWOD) to perform highly-controlled sequential and multiplexed single cell assays in massively parallelised workflows to enable complex cell profiling during screening. Soluble reagents or objects, such as cells or assay beads, are encapsulated into droplets of media in fluorous oil and are actively filtered based on size and optical features ensuring only desirable droplets (e.g. single cell droplets) are retained for analysis, thereby overcoming the Poisson probability distribution. Droplets are stored in an array on a temperature-controlled chip and the history of individual droplets is logged from the point of filter until completion of the workflow. On chip, droplets are subject to an automated and flexible suite of operations including the merging of sample droplets and the fluorescent acquisition of assay readouts to enable complex sequential assay workflows. To demonstrate the broad utility of the platform, we present examples of single-cell functional workflows for various applications such as antibody discovery, infectious disease, and cell and gene therapy.

2.
Nat Commun ; 12(1): 5333, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504087

RESUMO

The Spike (S) protein of SARS-CoV-2 binds ACE2 to direct fusion with host cells. S comprises a large external domain, a transmembrane domain, and a short cytoplasmic tail. Understanding the intracellular trafficking of S is relevant to SARS-CoV-2 infection, and to vaccines expressing full-length S from mRNA or adenovirus vectors. Here we report a proteomic screen for cellular factors that interact with the cytoplasmic tail of S. We confirm interactions with the COPI and COPII vesicle coats, ERM family actin regulators, and the WIPI3 autophagy component. The COPII binding site promotes exit from the endoplasmic reticulum, and although binding to COPI should retain S in the early Golgi where viral budding occurs, there is a suboptimal histidine residue in the recognition motif. As a result, S leaks to the surface where it accumulates and can direct the formation of multinucleate syncytia. Thus, the trafficking signals in the tail of S indicate that syncytia play a role in the SARS-CoV-2 lifecycle.


Assuntos
COVID-19/metabolismo , Membrana Celular/metabolismo , Células Gigantes/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Domínios Proteicos , Proteômica , Células Vero , Montagem de Vírus/genética
3.
J Cell Biol ; 220(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34473204

RESUMO

The fidelity of Golgi glycosylation is, in part, ensured by compartmentalization of enzymes within the stack. The COPI adaptor GOLPH3 has been shown to interact with the cytoplasmic tails of a subset of Golgi enzymes and direct their retention. However, other mechanisms of retention, and other roles for GOLPH3, have been proposed, and a comprehensive characterization of the clientele of GOLPH3 and its paralogue GOLPH3L is lacking. GOLPH3's role is of particular interest as it is frequently amplified in several solid tumor types. Here, we apply two orthogonal proteomic methods to identify GOLPH3+3L clients and find that they act in diverse glycosylation pathways or have other roles in the Golgi. Binding studies, bioinformatics, and a Golgi retention assay show that GOLPH3+3L bind the cytoplasmic tails of their clients through membrane-proximal positively charged residues. Furthermore, deletion of GOLPH3+3L causes multiple defects in glycosylation. Thus, GOLPH3+3L are major COPI adaptors that impinge on most, if not all, of the glycosylation pathways of the Golgi.


Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Vesículas Transportadoras/metabolismo , Transporte Biológico , Células Cultivadas , Células HEK293 , Humanos
4.
PLoS Pathog ; 17(1): e1009246, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33493182

RESUMO

Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infects cells by binding to the host cell receptor ACE2 and undergoing virus-host membrane fusion. Fusion is triggered by the protease TMPRSS2, which processes the viral Spike (S) protein to reveal the fusion peptide. SARS-CoV-2 has evolved a multibasic site at the S1-S2 boundary, which is thought to be cleaved by furin in order to prime S protein for TMPRSS2 processing. Here we show that CRISPR-Cas9 knockout of furin reduces, but does not prevent, the production of infectious SARS-CoV-2 virus. Comparing S processing in furin knockout cells to multibasic site mutants reveals that while loss of furin substantially reduces S1-S2 cleavage it does not prevent it. SARS-CoV-2 S protein also mediates cell-cell fusion, potentially allowing virus to spread virion-independently. We show that loss of furin in either donor or acceptor cells reduces, but does not prevent, TMPRSS2-dependent cell-cell fusion, unlike mutation of the multibasic site that completely prevents syncytia formation. Our results show that while furin promotes both SARS-CoV-2 infectivity and cell-cell spread it is not essential, suggesting furin inhibitors may reduce but not abolish viral spread.


Assuntos
Fusão Celular , Furina/genética , Glicoproteína da Espícula de Coronavírus/química , Internalização do Vírus , Animais , COVID-19 , Sistemas CRISPR-Cas , Chlorocebus aethiops , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Estrutura Terciária de Proteína , SARS-CoV-2 , Serina Endopeptidases , Células Vero
5.
FEBS Lett ; 593(17): 2452-2465, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31344261

RESUMO

The Golgi apparatus is an important site for the modification of most secreted and membrane proteins. Glycan processing is the major class of modification and is mediated by a large number of Golgi-resident glycosyltransferases and glycosidases. These Golgi enzymes are largely type II transmembrane domain (TMD) proteins consisting of a short N-terminal cytosolic tail, a relatively short TMD and a lumenal 'stem/stalk' region which acts as a spacer between the catalytic domain and the lipid bilayer. The cytosolic tail, TMD, and stem together make what is termed the CTS domain which is responsible for the specific localisation of these enzymes within sub-Golgi compartments via multiple mechanisms. In addition, the catalytic domains of some Golgi enzymes are secreted as a consequence of proteolytic cleavage within their TMDs or stem regions. Finally, there is evidence to suggest that when the retention of Golgi enzymes is perturbed they are targeted for lysosomal degradation.


Assuntos
Complexo de Golgi/enzimologia , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Humanos , Domínios Proteicos , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA