RESUMO
ATP citrate lyase (ACLY) synthesizes acetyl-CoA for de novo lipogenesis (DNL), which is elevated in metabolic dysfunction-associated steatotic liver disease. Hepatic ACLY is inhibited by the LDL-cholesterol-lowering drug bempedoic acid (BPA), which also improves steatosis in mice. While BPA potently suppresses hepatic DNL and increases fat catabolism, it is unclear if ACLY is its primary molecular target in reducing liver triglyceride. We show that on a Western diet, loss of hepatic ACLY alone or together with the acetyl-CoA synthetase ACSS2 unexpectedly exacerbates steatosis, linked to reduced PPARα target gene expression and fatty acid oxidation. Importantly, BPA treatment ameliorates Western diet-mediated triacylglyceride accumulation in both WT and liver ACLY knockout mice, indicating that its primary effects on hepatic steatosis are ACLY independent. Together, these data indicate that hepatic ACLY plays an unexpected role in restraining diet-dependent lipid accumulation and that BPA exerts substantial effects on hepatic lipid metabolism independently of ACLY.
RESUMO
BACKGROUND: Sestrins (SESN1-3) act as proximal sensors in leucine-induced activation of the protein kinase mechanistic target of rapamycin (mTOR) in complex 1 (mTORC1), a key regulator of cell growth and metabolism. OBJECTIVE: In the present study, the hypothesis that SESNs also mediate glucose-induced activation of mTORC1 was tested. METHODS: Rats underwent overnight fasting, and in the morning, either saline or a glucose solution (4 gâ kg-1 BW/10 mLâ kg-1) was administered by oral gavage; mTORC1 activation in the tibialis anterior muscle was assessed. To further assess the mechanism through which glucose promotes mTORC1 activation, wild-type (WT) HEK293T and HEK293T cells lacking either all 3 SESNs (SESNTKO) or hexokinase 2 (HK2KO) were deprived of glucose, followed by glucose addback, and mTORC1 activation was assessed. In addition, glucose-induced changes in the association of the SESNs with components of the GAP activity toward the Rags (GATOR2) complex and with hexokinase 2 (HK2) were assessed by co-immunoprecipitation. One- and two-way ANOVA with Tukey post hoc comparisons were used. RESULTS: Glucose administration to fasted rats promoted mTORC1 activation. Similarly, glucose readdition (GluAB) to the medium of glucose-deprived WT cells also promoted mTORC1 activation. By contrast, SESNTKO cells demonstrated attenuated mTORC1 activation following GluAB compared with WT cells. Interestingly, HK2 associated with all 3 SESNs in a glucose-dependent manner, i.e., HK2 abundance in SESN immunoprecipitates was high in cells deprived of glucose and decreased in response to GluAB. Moreover, similar to SESNTKO cells, the sensitivity of mTORC1 to GluAB was attenuated in HK2KO cells compared with WT cells. CONCLUSIONS: The results of this study demonstrate that the SESNs and HK2 play important roles in glucose-induced mTORC1 activation in HEK293T cells. However, unlike leucine-induced mTORC1 activation, the effect was independent of the changes in SESN-GATOR2 interaction, and instead, it was associated with alterations in the association of SESNs with HK2.
Assuntos
Transdução de Sinais , Serina-Treonina Quinases TOR , Ratos , Animais , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células HEK293 , Serina-Treonina Quinases TOR/metabolismo , Leucina/farmacologia , Sestrinas/metabolismo , Hexoquinase/metabolismo , Hexoquinase/farmacologia , Glucose/farmacologiaRESUMO
BACKGROUND AND AIMS: Exercise remains a key component of nonalcoholic fatty liver disease (NAFLD) treatment. However, mechanisms underpinning the improvements in NAFLD seen with exercise are unclear. Exercise improved liver fat and serum biomarkers of liver fibrosis in the NASHFit trial. We investigated exercise's mechanism of benefit by conducting a post hoc analysis of these data to determine the relationship between serum fibroblast growth factor (FGF) 21, which is implicated in NAFLD development, and exercise. METHODS: In the 20 wk NASHFit trial, patients with nonalcoholic steatohepatitis (NASH) were randomized to receive moderate-intensity aerobic exercise training or standard clinical care. Mediterranean-informed dietary counseling was provided to each group. Change in serum FGF21 was measured after an overnight fast. RESULTS: There was a significant improvement in serum FGF21 with exercise training compared to standard clinical care (p = 0.037) with serum FGF21 reducing by 22% (-243.4 +/-349 ng/mL) with exercise vs. a 34% increase (+88.4 ng/mL +/-350.3 ng/mL) with standard clinical care. There was a large inverse association between change in serum FGF21 and change in cardiorespiratory fitness (VO2peak) (r = -0.62, 95% CI -0.88 to -0.05, p = 0.031), and on multivariable analysis, change in VO2peak remained independently associated with change in FGF21 (ß = -44.5, 95% CI -83.8 to -5.11, p = 0.031). CONCLUSIONS: Serum FGF21 is markedly decreased in response to aerobic exercise training, offering a novel mechanism to explain the observed reduction in liver fat and improvement in serum biomarkers of liver fibrosis in patients with NASH who do exercise.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo , Exercício Físico/fisiologia , Cirrose Hepática/metabolismo , Biópsia , BiomarcadoresRESUMO
Consumption of a diet rich in saturated fatty acids and carbohydrates contributes to the accumulation of fat in the liver and development of non-alcoholic steatohepatitis (NASH). Herein we investigated the hypothesis that short-term consumption of a high fat/sucrose Western diet (WD) alters the genomic and translatomic profile of the liver in association with changes in signaling through the protein kinase mTORC1, and that such alterations contribute to development of NAFLD. The results identify a plethora of mRNAs that exhibit altered expression and/or translation in the liver of rats consuming a WD compared to a CD. In particular, consumption of a WD altered the abundance and ribosome association of mRNAs involved in lipid and fatty acid metabolism, as well as those involved in glucose metabolism and insulin signaling. Hepatic mTORC1 signaling was enhanced when rats were fasted overnight and then refed in the morning; however, this effect was blunted in rats fed a WD as compared to a CD. Despite similar plasma insulin concentrations, fatty acid content was elevated in the liver of rats fed a WD as compared to a CD. We found that feeding had a significant positive effect on ribosome occupancy of 49 mRNAs associated with hepatic steatosis (e.g., LIPE, LPL), but this effect was blunted in the liver of rats fed a WD. In many cases, changes in ribosome association were independent of alterations in mRNA abundance, suggesting a critical role for diet-induced changes in mRNA translation in the expression of proteins encoded by those mRNAs. Overall, the findings demonstrate that short-term consumption of a WD impacts hepatic gene expression by altering the abundance of many mRNAs, but also causes wide-spread variation in mRNA translation that potentially contribute to development of hepatic steatosis.
Assuntos
Dieta Ocidental , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Dieta Ocidental/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácidos Graxos , Insulina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Expressão GênicaRESUMO
The insulin responsive Akt and FoxO1 signaling axis is a key regulator of the hepatic transcriptional response to nutrient intake. Here, we used global run-on sequencing (GRO-seq) to measure the nascent transcriptional response to fasting and refeeding as well as define the specific role of hepatic Akt and FoxO1 signaling in mediating this response. We identified 599 feeding-regulated transcripts, as well as over 6,000 eRNAs, and mapped their dependency on Akt and FoxO1 signaling. Further, we identified several feeding-regulated lncRNAs, including the lncRNA Gm11967, whose expression was dependent upon the liver Akt-FoxO1 axis. Restoring Gm11967 expression in mice lacking liver Akt improved insulin sensitivity and induced glucokinase protein expression, indicating that Akt-dependent control of Gm11967 contributes to the translational control of glucokinase. More broadly, we have generated a unique genome-wide dataset that defines the feeding and Akt/FoxO1-dependent transcriptional changes in response to nutrient availability.
RESUMO
During metastasis cancer cells must adapt to survive loss of anchorage and evade anoikis. An important pro-survival adaptation is the ability of metastatic tumor cells to increase their antioxidant capacity and restore cellular redox balance. Although much is known about the transcriptional regulation of antioxidant enzymes in response to stress, how cells acutely adapt to alter antioxidant enzyme levels is less well understood. Using ovarian cancer cells as a model, we demonstrate that an increase in mitochondrial superoxide dismutase SOD2 protein expression is a very early event initiated in response to detachment, an important step during metastasis that has been associated with increased oxidative stress. SOD2 protein synthesis is rapidly induced within 0.5-2 h of matrix detachment, and polyribosome profiling demonstrates an increase in the number of ribosomes bound to SOD2 mRNA, indicating an increase in SOD2 mRNA translation in response to anchorage-independence. Mechanistically, we find that anchorage-independence induces cytosolic accumulation of the RNA binding protein HuR/ELAVL1 and promotes HuR binding to SOD2 mRNA. Using HuR siRNA-mediated knockdown, we show that the presence of HuR is necessary for the increase in SOD2 mRNA association with the heavy polyribosome fraction and consequent nascent SOD2 protein synthesis in anchorage-independence. Cellular detachment also activates the stress-response mitogen-activated kinase p38, which is necessary for HuR-SOD2 mRNA interactions and induction of SOD2 protein output. These findings illustrate a novel translational regulatory mechanism of SOD2 by which ovarian cancer cells rapidly increase their mitochondrial antioxidant capacity as an acute stress response to anchorage-independence.
Assuntos
Antioxidantes , Adesão Celular , Proteína Semelhante a ELAV 1 , Superóxido Dismutase , Anoikis/fisiologia , Antioxidantes/metabolismo , Adesão Celular/genética , Adesão Celular/fisiologia , Proteína Semelhante a ELAV 1/metabolismo , Feminino , Humanos , Neoplasias Ovarianas/genética , RNA Mensageiro/genética , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genéticaRESUMO
Increased expression of the peptide hormone retinol-binding protein 4 (RBP4) has been implicated in the development of insulin resistance, type 2 diabetes, and visual dysfunction. Prior investigations of the mechanisms that influence RBP4 synthesis have focused solely on changes in mRNA abundance. Yet, the production of many secreted proteins is controlled at the level of mRNA translation, as it allows for a rapid and reversible change in expression. Herein, we evaluated Rbp4 mRNA translation using sucrose density gradient centrifugation. In the liver of fasted rodents, Rbp4 mRNA translation was low. In response to refeeding, Rbp4 mRNA translation was enhanced and RBP4 levels in serum were increased. In H4IIE cells, refreshing culture medium promoted Rbp4 mRNA translation and expression of the protein. Rbp4 mRNA abundance was not increased by either experimental manipulation. Enhanced Rbp4 mRNA translation was associated with activation of the kinase mechanistic target of rapamycin in complex 1 (mTORC1) and enhanced phosphorylation of the translational repressor eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). In H4IIE cells, expression of a 4E-BP1 variant that is unable to be phosphorylated by mTORC1 or suppression of mTORC1 with rapamycin attenuated activity of a luciferase reporter encoding the Rbp4 mRNA 5'-untranslated region (UTR). Purine substitutions to disrupt a terminal oligopyrimidine (TOP)-like sequence in the Rbp4 5'-UTR prevented the suppressive effect of rapamycin on reporter activity. Rapamycin also prevented upregulation of Rbp4 mRNA translation in the liver and reduced serum levels of RBP4 in response to feeding. Overall, the findings support a model in which nutrient-induced activation of mTORC1 upregulates Rbp4 mRNA translation to promote RBP4 synthesis.NEW & NOTEWORTHY RBP4 plays a critical role in metabolic disease, yet relatively little is known about the mechanisms that regulate its production. Herein, we provide evidence for translational control of RBP4 synthesis. We demonstrate that activation of the nutrient-sensitive kinase mTORC1 promotes hepatic Rbp4 mRNA translation. The findings support the possibility that targeting Rbp4 mRNA translation represents an alternative to current therapeutic interventions that lower serum RBP4 concentration by promoting urinary excretion of the protein.
Assuntos
Hepatócitos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/genética , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Animais , Células Cultivadas , Ingestão de Alimentos/fisiologia , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologiaRESUMO
Fibroblast growth factor 21 (FGF21) is a peptide hormone that acts to enhance insulin sensitivity and reverse many of the metabolic defects associated with consumption of a high-fat diet. Recent studies show that the liver is the primary source of FGF21 in the blood, and that hepatic FGF21 expression is upregulated by glucagon. Interestingly, glucagon acts to upregulate FGF21 production by primary cultures of rat hepatocytes and H4IIE and HepG2 hepatocarcinoma cells independent of changes in FGF21 mRNA abundance, suggesting that FGF21 protein expression is regulated post-transcriptionally. Based on these observations, the goal of the present study was to assess whether or not FGF21 mRNA is translationally regulated. The results show that FGF21 mRNA translation and secretion of the hormone are significantly upregulated in H4IIE cells exposed to 25 nM glucagon, independent of changes in FGF21 mRNA abundance. Furthermore, the glucagon-induced upregulation of FGF21 mRNA translation is associated with suppressed activity of the mechanistic target of rapamycin in complex 1 (mTORC1). Similarly, the results show that rapamycin-induced suppression of mTORC1 leads to upregulation of FGF21 mRNA translation with no change in FGF21 mRNA abundance. In contrast, activation of mTORC1 by refreshing the culture medium leads to downregulation of FGF21 mRNA translation. Notably, re-feeding fasted rats also leads to downregulation of FGF21 mRNA translation concomitantly with activation of mTORC1 in the liver. Overall, the findings support a model in which glucagon acts to upregulate FGF21 production by hepatocytes through suppression of mTORC1 and subsequent upregulation of FGF21 mRNA translation.
RESUMO
Skeletal muscle atrophy is associated with disease, aging, and disuse. Hindlimb unloading (HU) in animals provides an experimental model to study muscle atrophy. A comprehensive time course for how HU affects biomarkers of protein synthesis and degradation acutely and chronically and the associated resistance to an anabolic stimulus following disuse remain undocumented. Sixteen-week-old C57BL/6 mice underwent 0, 1, 12, 24, 72, 168, or 336 h of HU. Following 336 h of HU, mice were reloaded for 1, 24, or 72 h. Another group of mice underwent 120 h of HU, were fasted or refed, and were then compared with similar condition control animals (CTL). Protein content and phosphorylation of biomarkers of protein synthesis, degradation, and autophagy were assessed in the soleus muscle. Gastrocnemius, soleus, and plantaris muscles atrophied within 120 h of HU. Protein synthesis trended toward decrease following 24 h of HU. p70S6K phosphorylation and protein synthesis increased with reloading. Following HU, changes in MAFbx and DEPTOR expression and DEPTOR phosphorylation were consistent with development of a catabolic state. DEPTOR expression recovered following reloading. Animals that underwent 120 h of HU exhibited attenuation of refeeding-induced p70S6K phosphorylation compared with CTL counterparts. Following 120 h of HU, protein synthesis, eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) phosphorylation, and DEPTOR, MAFbx, and Sestrin1 expression indicated a catabolic state. Following 120 h of HU, autophagy markers, including p62 expression, REDD1 expression, LC3 ratio, and Unc-51-like autophagy-activating kinase 1 (ULK1) phosphorylation, indicated impaired autophagy. HU promotes a deleterious balance between protein synthesis and degradation. The time course herein provides scientists information about when the associated biomarkers become affected.NEW & NOTEWORTHY Hindlimb unloading causes significant skeletal muscle atrophy by adversely affecting the balance between protein synthesis and breakdown. This study demonstrates a more complete time course for changes in biomarkers associated with protein synthesis and breakdown and investigates the associated anabolic resistance to an anabolic stimulus following hindlimb unloading. These data in concert with information from other studies provide a basis for designing future experiments to optimally interrogate a desired cellular biomarker or pathway.