Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 496, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500662

RESUMO

The California Current Trophic Database (CCTD) was developed at NOAA Southwest Fisheries Science Center in collaboration with numerous diet data contributors. We compiled the CCTD from twenty-four data sets, representing both systematic collections and directed trophic studies. Diet composition data, including stomach and scat samples, were obtained from 105,694 individual predators among 143 taxa collected throughout the California Current Large Marine Ecosystem (CCLME) from 1967-2019. Predator taxa consist of squids (n = 5), elasmobranchs (n = 13), bony fishes (n = 118), and marine mammals (n = 7). Extensive time series are available for some predators (e.g., California Sea Lion, Pacific Hake, Chinook Salmon). The CCTD represents the largest compilation of raw trophic data within the CCLME, allowing for more refined analyses and modeling studies within this region. Our intention is to further augment and periodically update the dataset as additional historical or contemporary data become available to increase its utility and impact.


Assuntos
Ecossistema , Peixes , Animais , Mamíferos , Estado Nutricional , California
2.
J Morphol ; 284(7): e21606, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37313768

RESUMO

The main cannabinoid receptor CB1R first shows expression during early neurula stage in chicken (Gallus gallus) embryos, and at early tailbud stage in the frog (Xenopus laevis) embryos. This raises the question of whether CB1R regulates similar or distinct processes during the embryonic development of these two species. Here, we examined whether CB1R influences the migration and morphogenesis of neural crest cells and derivatives in both chicken and frog embryos. Early neurula stage chicken embryos were exposed to arachidonyl-2'-chloroethylamide (ACEA; a CB1R agonist), N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251; a CB1R inverse agonist) or Blebbistatin (nonmuscle Myosin II inhibitor) in ovo and examined during migration of neural crest cells and at condensing cranial ganglia stage. Early tailbud stage frog embryos were bathed in ACEA, AM251 or Blebbistatin, and analyzed at late tailbud stage for changes in craniofacial and eye morphogenesis, and in patterning and morphology of melanophores (neural crest-derived pigment cells). In chicken embryos exposed to ACEA and Myosin II inhibitor, cranial neural crest cells migrated erratically from the neural tube, and the right, but not the left, ophthalmic nerve of the trigeminal ganglia was affected in ACEA- and AM251-treated embryos. In frog embryos with inactivation or activation of CB1R, or inhibition of Myosin II, the craniofacial and eye regions were smaller and/or less developed, and the melanophores overlying the posterior midbrain were more dense, and stellate in morphology, than the same tissues and cells in control embryos. This data suggests that despite differences in the time of onset of expression, normal activity of CB1R is required for sequential steps in migration and morphogenesis of neural crest cells and derivatives in both chicken and frog embryos. In addition, CB1R may signal through Myosin II to regulate migration and morphogenesis of neural crest cells and derivatives in chicken and frog embryos.


Assuntos
Galinhas , Crista Neural , Embrião de Galinha , Animais , Feminino , Agonismo Inverso de Drogas , Morfogênese , Desenvolvimento Embrionário , Anuros
3.
PLoS One ; 16(5): e0251638, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34043656

RESUMO

Rockfish are an important component of West Coast fisheries and California Current food webs, and recruitment (cohort strength) for rockfish populations has long been characterized as highly variable for most studied populations. Research efforts and fisheries surveys have long sought to provide greater insights on both the environmental drivers, and the fisheries and ecosystem consequences, of this variability. Here, variability in the temporal and spatial abundance and distribution patterns of young-of-the-year (YOY) rockfishes are described based on midwater trawl surveys conducted throughout the coastal waters of California Current between 2001 and 2019. Results confirm that the abundance of winter-spawning rockfish taxa in particular is highly variable over space and time. Although there is considerable spatial coherence in these relative abundance patterns, there are many years in which abundance patterns are very heterogeneous over the scale of the California Current. Results also confirm that the high abundance levels of YOY rockfish observed during the 2014-2016 large marine heatwave were largely coastwide events. Species association patterns of pelagic YOY for over 20 rockfish taxa in space and time are also described. The overall results will help inform future fisheries-independent surveys, and will improve future indices of recruitment strength used to inform stock assessment models and marine ecosystem status reports.


Assuntos
Distribuição Animal , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Pesqueiros/estatística & dados numéricos , Perciformes/fisiologia , Estações do Ano , Animais , California , Conservação dos Recursos Naturais/estatística & dados numéricos , Cadeia Alimentar , Análise Espaço-Temporal
4.
Nat Commun ; 11(1): 536, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988285

RESUMO

Climate change and increased variability and intensity of climate events, in combination with recovering protected species populations and highly capitalized fisheries, are posing new challenges for fisheries management. We examine socio-ecological features of the unprecedented 2014-2016 northeast Pacific marine heatwave to understand the potential causes for record numbers of whale entanglements in the central California Current crab fishery. We observed habitat compression of coastal upwelling, changes in availability of forage species (krill and anchovy), and shoreward distribution shift of foraging whales. We propose that these ecosystem changes, combined with recovering whale populations, contributed to the exacerbation of entanglements throughout the marine heatwave. In 2016, domoic acid contamination prompted an unprecedented delay in the opening of California's Dungeness crab fishery that inadvertently intensified the spatial overlap between whales and crab fishery gear. We present a retroactive assessment of entanglements to demonstrate that cooperation of fishers, resource managers, and scientists could mitigate future entanglement risk by developing climate-ready fisheries approaches, while supporting thriving fishing communities.


Assuntos
Comportamento Animal , Mudança Climática , Jubarte/fisiologia , Animais , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Comportamento de Retorno ao Território Vital , Temperatura Alta , Jubarte/lesões , Densidade Demográfica
5.
Ecol Appl ; 27(2): 560-574, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27862556

RESUMO

Human impacts (e.g., fishing, pollution, and shipping) on pelagic ecosystems are increasing, causing concerns about stresses on marine food webs. Maintaining predator-prey relationships through protection of pelagic hotspots is crucial for conservation and management of living marine resources. Biotic components of pelagic, plankton-based, ecosystems exhibit high variability in abundance in time and space (i.e., extreme patchiness), requiring investigation of persistence of abundance across trophic levels to resolve trophic hotspots. Using a 26-yr record of indicators for primary production, secondary (zooplankton and larval fish), and tertiary (seabirds) consumers, we show distributions of trophic hotspots in the southern California Current Ecosystem result from interactions between a strong upwelling center and a productive retention zone with enhanced nutrients, which concentrate prey and predators across multiple trophic levels. Trophic hotspots also overlap with human impacts, including fisheries extraction of coastal pelagic and groundfish species, as well as intense commercial shipping traffic. Spatial overlap of trophic hotspots with fisheries and shipping increases vulnerability of the ecosystem to localized depletion of forage fish, ship strikes on marine mammals, and pollution. This study represents a critical step toward resolving pelagic areas of high conservation interest for planktonic ecosystems and may serve as a model for other ocean regions where ecosystem-based management and marine spatial planning of pelagic ecosystems is warranted.


Assuntos
Comércio , Pesqueiros , Cadeia Alimentar , Atividades Humanas , Animais , California , Ecossistema , Oceano Pacífico , Navios
6.
Ecol Appl ; 24(7): 1730-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-29210234

RESUMO

Studies of predator­prey demographic responses and the physical drivers of such relationships are rare, yet essential for predicting future changes in the structure and dynamics of marine ecosystems. Here, we hypothesize that predator­prey relationships vary spatially in association with underlying physical ocean conditions, leading to observable changes in demographic rates, such as reproduction. To test this hypothesis, we quantified spatio-temporal variability in hydrographic conditions, krill, and forage fish to model predator (seabird) demographic responses over 18 years (1990­2007). We used principal component analysis and spatial correlation maps to assess coherence among ocean conditions, krill, and forage fish, and generalized additive models to quantify interannual variability in seabird breeding success relative to prey abundance. The first principal component of four hydrographic measurements yielded an index that partitioned "warm/weak upwelling" and "cool/strong upwelling" years. Partitioning of krill and forage fish time series among shelf and oceanic regions yielded spatially explicit indicators of prey availability. Krill abundance within the oceanic region was remarkably consistent between years, whereas krill over the shelf showed marked interannual fluctuations in relation to ocean conditions. Anchovy abundance varied on the shelf, and was greater in years of strong stratification, weak upwelling and warmer temperatures. Spatio-temporal variability of juvenile forage fish co-varied strongly with each other and with krill, but was weakly correlated with hydrographic conditions. Demographic responses between seabirds and prey availability revealed spatially variable associations indicative of the dynamic nature of "predator­habitat" relationships. Quantification of spatially explicit demographic responses, and their variability through time, demonstrate the possibility of delineating specific critical areas where the implementation of protective measures could maintain functions and productivity of central place foraging predators.


Assuntos
Charadriiformes/fisiologia , Euphausiacea/fisiologia , Peixes/fisiologia , Comportamento Predatório/fisiologia , Animais , Oceano Pacífico , Dinâmica Populacional , Salinidade , Água do Mar , Temperatura , Fatores de Tempo
7.
PLoS One ; 7(9): e45852, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029274

RESUMO

The green sturgeon (Acipenser medirostris), which is found in the eastern Pacific Ocean from Baja California to the Bering Sea, tends to be highly migratory, moving long distances among estuaries, spawning rivers, and distant coastal regions. Factors that determine the oceanic distribution of green sturgeon are unclear, but broad-scale physical conditions interacting with migration behavior may play an important role. We estimated the distribution of green sturgeon by modeling species-environment relationships using oceanographic and migration behavior covariates with maximum entropy modeling (MaxEnt) of species geographic distributions. The primary concentration of green sturgeon was estimated from approximately 41-51.5° N latitude in the coastal waters of Washington, Oregon, and Vancouver Island and in the vicinity of San Francisco and Monterey Bays from 36-37° N latitude. Unsuitably cold water temperatures in the far north and energetic efficiencies associated with prevailing water currents may provide the best explanation for the range-wide marine distribution of green sturgeon. Independent trawl records, fisheries observer records, and tagging studies corroborated our findings. However, our model also delineated patchily distributed habitat south of Monterey Bay, though there are few records of green sturgeon from this region. Green sturgeon are likely influenced by countervailing pressures governing their dispersal. They are behaviorally directed to revisit natal freshwater spawning rivers and persistent overwintering grounds in coastal marine habitats, yet they are likely physiologically bounded by abiotic and biotic environmental features. Impacts of human activities on green sturgeon or their habitat in coastal waters, such as bottom-disturbing trawl fisheries, may be minimized through marine spatial planning that makes use of high-quality species distribution information.


Assuntos
Migração Animal , Peixes , Modelos Biológicos , Análise de Variância , Distribuição Animal , Animais , Área Sob a Curva , Modelos Estatísticos , Oceano Pacífico , Curva ROC , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA