Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Antioxidants (Basel) ; 11(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36009319

RESUMO

Myristoylated alanine-rich C-kinase substrate (MARCKS) is a ubiquitous protein mediating versatile effects in a variety of cell types, including actin crosslinking, signal transduction, and intracellular transport processes. MARCKS's functional role in monocyte/macrophages, however, has not yet been adequately addressed. Thus, the aim of this study was to further elucidate the impact of MARCKS on central cellular functions of monocytic cells. To address this topic, we generated monocytic THP-1 (Tohoku Hospital Pediatrics-1)-derived MARCKS wildtype and knockout (KO) cells using the CRISPR/Cas9 technique. Remarkably, in the absence of MARCKS, both total and intracellular reactive oxygen species (ROS) production were strongly suppressed but restored following transient MARCKS re-transfection. In contrast, proliferation, differentiation, cytokine expression, and phagocytosis remained unaltered. A complete inhibition of ROS production could also be achieved in THP-1-derived PKCß KO cells or in PKC inhibitor Staurosporine-treated primary human monocytes. MARCKS deficiency also involved reduced basal Akt phosphorylation and delayed re-phosphorylation. Further analyses indicated that long-term TNF pre-incubation strongly enhances monocytic ROS production, which was completely blocked in MARCKS and PKCß KO cells. Collectively, our study demonstrates that MARCKS is an essential molecule enabling ROS production by monocytic cells and suggests that MARCKS is part of a signal cascade involved in ROS formation.

2.
J Inflamm Res ; 14: 1717-1730, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986607

RESUMO

BACKGROUND: Termination of TNF-induced signaling plays a key role in the resolution of inflammation with dysregulations leading to severe pathophysiological conditions (sepsis, chronic inflammatory disease, cancer). Since a recent phospho-proteome analysis in human monocytes suggested GSK3 as a relevant kinase during signal termination, we aimed at further elucidating its role in this context. MATERIALS AND METHODS: For the analyses, THP-1 monocytic cells and primary human monocytes were used. Staurosporine (Stauro) was applied to activate GSK3 by inhibiting kinases that mediate inhibitory GSK3α/ß-Ser21/9 phosphorylation (eg, PKC). For GSK3 inhibition, Kenpaulone (Ken) was used. GSK3- and PKC-siRNAs were applied for knockdown experiments. Protein expression and phosphorylation were assessed by Western blot or ELISA and mRNA expression by qPCR. NF-κB activation was addressed using reporter gene assays. RESULTS: Constitutive GSK3ß and PKCß expression and GSK3α/ß-Ser21/9 and PKCα/ßII-Thr638/641 phosphorylation were not altered during TNF long-term incubation. Stauro-induced GSK3 activation (demonstrated by Bcl3 reduction) prevented termination of TNF-induced signaling as reflected by strongly elevated IL-8 expression (used as an indicator) following TNF long-term incubation. A similar increase was observed in TNF short-term-exposed cells, and this effect was inhibited by Ken. PKCα/ß-knockdown modestly increased, whereas GSK3α/ß-knockdown inhibited TNF-induced IL-8 expression. TNF-dependent activation of two NF-κB-dependent indicator plasmids was enhanced by Stauro, demonstrating transcriptional effects. A TNF-induced increase in p65-Ser536 phosphorylation was further enhanced by Stauro, whereas IκBα proteolysis and IKKα/ß-Ser176/180 phosphorylation were not affected. Moreover, PKCß-knockdown reduced levels of Bcl3. A20 and IκBα mRNA, both coding for signaling inhibitors, were dramatically less affected under our conditions when compared to IL-8, suggesting differential transcriptional effects. CONCLUSION: Our results suggest that GSK3 activation is involved in preventing the termination of TNF-induced signaling. Our data demonstrate that activation of GSK3 - either pathophysiologically or pharmacologically induced - may destroy the finely balanced condition necessary for the termination of inflammation-associated signaling.

3.
Int J Mol Sci ; 20(5)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871024

RESUMO

To better understand the inflammation-associated mechanisms modulating and terminating tumor necrosis factor (TNF-)induced signal transduction and the development of TNF tolerance, we analyzed both the proteome and the phosphoproteome in TNF long term-incubated (i.e., 48 h) primary human monocytes using liquid chromatography-mass spectrometry. Our analyses revealed the presence of a defined set of proteins characterized by reproducible changes in expression and phosphorylation patterns in long term TNF-treated samples. In total, 148 proteins and 569 phosphopeptides were significantly regulated (103 proteins increased, 45 proteins decreased; 377 peptides with increased and 192 peptides with decreased phosphorylation). A variety of these proteins are associated with the non-canonical nuclear factor κB (NF-κB) pathway (nuclear factor κB (NFKB) 2, v-rel reticuloendotheliosis viral oncogene homolog (REL) B, indolamin-2,3-dioxygenase (IDO), kynureninase (KYNU)) or involved in the negative regulation of the canonical NF-κB system. Within the phosphopeptides, binding motifs for specific kinases were identified. Glycogen synthase kinase (GSK) 3 proved to be a promising candidate, since it targets NF-κB inhibiting factors, such as CCAAT/enhancer binding protein (C/EBP) ß. Our experiments demonstrate that both proteome and phosphoproteome analysis can be effectively applied to study protein/phosphorylation patterns of primary monocytes. These results provide new regulatory candidates and evidence for a complex network of specific but synergistically acting/cooperating mechanisms enabling the affected cells to resist sustained TNF exposure and resulting in the resolution of inflammation.


Assuntos
Monócitos/metabolismo , Proteoma/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Células HeLa , Humanos , Inflamação/metabolismo , NF-kappa B/metabolismo , Fosforilação/fisiologia , Transdução de Sinais/fisiologia , Células THP-1
4.
J Immunol Res ; 2017: 9570129, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29250561

RESUMO

Tumor necrosis factor (TNF) tolerance in monocytes and macrophages means that preexposure to TNF reduces the sensitivity in these cells to a subsequent restimulation with this cytokine. Differential effects arise following preincubation with both low and high doses of TNF resulting in absolute as well as induction tolerance affecting specific immunologically relevant gene sets. In this review article, we summarize the relevance of TNF tolerance in vivo and the molecular mechanisms underlying these forms of tolerance including the role of transcription factors and signaling systems. In addition, the characteristics of cross-tolerance between TNF and lipopolysaccharide (LPS) as well as pathophysiological aspects of TNF tolerance are discussed. We conclude that TNF tolerance may represent a protective mechanism involved in the termination of inflammation and preventing excessive or prolonged inflammation. Otherwise, tolerance may also be a trigger of immune paralysis thus contributing to severe inflammatory diseases such as sepsis. An improved understanding of TNF tolerance will presumably facilitate the implementation of diagnostic or therapeutic approaches to more precisely assess and treat inflammation-related diseases.


Assuntos
Tolerância a Medicamentos , Tolerância Imunológica , Macrófagos/fisiologia , Monócitos/fisiologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Regulação da Expressão Gênica , Humanos , Inflamação , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Cell Signal ; 37: 123-135, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28629782

RESUMO

Following the acute phase of an inflammatory reaction, a strictly controlled resolution of inflammation is necessary. A dysregulation of this process leads to hyperinflammation, chronic inflammatory disease, or immune paralysis. Different mechanisms participate in the coordinated termination of the inflammatory process, e.g. the expression of antiinflammatory molecules and different forms of tolerance. To better understand the processes which mediate resolution of TNF-dependent inflammation and induce tolerance, it is necessary to characterize the signal transduction quality during TNF long-term (pre)incubation. Within a time frame from 12 to 48h, designated as phase III of the TNF response, we measured an ongoing, constitutive activation of TNFR1/NF-κB-dependent pathways in monocytic cells. Phase III signalling which was also named "constitutive signaling in TNF tolerant cells" induces the expression of low- and high-sensitive target genes including A20 which is differentially regulated by transcriptional and proteolytic events. A20 strictly controls TNF long-term constitutive signalling in an IκB kinase complex- and partially RIP-dependent manner supported by adjuvant ABIN1. In addition, CYLD proteins participate in the regulation of this late-phase signal transduction, whereas downstream molecules such as Bcl3 and p50 are not involved. A20 and CYLD are expressed with different mRNA kinetics resulting in a strong or only a modest increase in protein levels, respectively. The identification of mechanisms which contribute to the termination of inflammation will provide additional diagnostic and therapeutic aspects to specifically diagnose certain aspects of inflammation and specifically modulate them.


Assuntos
Enzima Desubiquitinante CYLD/imunologia , Monócitos/imunologia , Transdução de Sinais , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/imunologia , Células Cultivadas , Enzima Desubiquitinante CYLD/genética , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Monócitos/metabolismo , NF-kappa B/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética
6.
PLoS One ; 10(12): e0144338, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26646662

RESUMO

The transcription factor C/EBPß plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (pre)monocytic differentiation there is a considerable increase in the large C/EBPß isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (post)translational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPß in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular , Fatores de Iniciação em Eucariotos/fisiologia , Modelos Biológicos , Monócitos/citologia , Transdução de Sinais/fisiologia , Animais , Calpaína/antagonistas & inibidores , Células Cultivadas , Quimotripsina/antagonistas & inibidores , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Estabilidade Proteica
7.
Cell Mol Life Sci ; 71(1): 63-92, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23525665

RESUMO

Monocyte/macrophages are important players in orchestrating the immune response as well as connecting innate and adaptive immunity. Myelopoiesis and monopoiesis are characterized by the interplay between expansion of stem/progenitor cells and progression towards further developed (myelo)monocytic phenotypes. In response to a variety of differentiation-inducing stimuli, various prominent signaling pathways are activated. Subsequently, specific transcription factors are induced, regulating cell proliferation and maturation. This review article focuses on the integration of signaling modules and transcriptional networks involved in the determination of monocytic differentiation.


Assuntos
Monócitos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA