Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem ; 16(3): 466-475, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38057367

RESUMO

Although α-chiral C(sp3)-S bonds are of enormous importance in organic synthesis and related areas, the transition-metal-catalysed enantioselective C(sp3)-S bond construction still represents an underdeveloped domain probably due to the difficult heterolytic metal-sulfur bond cleavage and notorious catalyst-poisoning capability of sulfur nucleophiles. Here we demonstrate the use of chiral tridentate anionic ligands in combination with Cu(I) catalysts to enable a biomimetic enantioconvergent radical C(sp3)-S cross-coupling reaction of both racemic secondary and tertiary alkyl halides with highly transformable sulfur nucleophiles. This protocol not only exhibits a broad substrate scope with high enantioselectivity but also provides universal access to a range of useful α-chiral alkyl organosulfur compounds with different sulfur oxidation states, thus providing a complementary approach to known asymmetric C(sp3)-S bond formation methods. Mechanistic results support a biomimetic radical homolytic substitution pathway for the critical C(sp3)-S bond formation step.

2.
Nat Chem ; 15(3): 395-404, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36575341

RESUMO

The transition-metal-catalysed cross-coupling reaction has established itself as one of the most reliable and practical synthetic tools for the efficient construction of carbon-carbon/heteroatom (p-block elements other than carbon) bonds in both racemic and enantioselective manners. In contrast, development of the corresponding heteroatom-heteroatom cross-couplings has so far remained elusive, probably due to the under-investigated and often challenging heteroatom-heteroatom reductive elimination. Here we demonstrate the use of single-electron reductive elimination as a strategy for developing enantioselective S-O coupling under Cu catalysis, based on both experimental and theoretical results. The reaction manifests its synthetic potential by the ready preparation of challenging chiral alcohols featuring congested stereocentres, the expedient valorization of the biomass-derived feedstock glycerol, and the remarkable catalytic 4,6-desymmetrization of inositol. These results demonstrate the potential of enantioselective radical heteroatomic cross-coupling as a general chiral heteroatom-heteroatom formation strategy.

3.
Org Lett ; 24(13): 2536-2540, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35344658

RESUMO

A copper-catalyzed highly anti-selective radical 1,2-alkylarylation of terminal alkynes with aryl boronic acids and alkyl bromides has been established. The reaction exhibits high compatibility with a wide range of terminal alkynes and diverse aryl boronic acids, thus providing facile access to various stereodefined trisubstituted alkenes in high yield under mild reaction conditions. Preliminary mechanistic investigations support the formation of alkyl radicals and their subsequent addition to alkynes in the reaction.


Assuntos
Alcinos , Cobre , Alcenos , Ácidos Borônicos , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA