Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
BMC Genomics ; 25(1): 852, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261785

RESUMO

BACKGROUND: Low levels of the essential amino acid lysine in maize endosperm is considered to be a major problem regarding the nutritional quality of food and feed. Increasing the lysine content of maize is important to improve the quality of food and feed nutrition. Although the genetic basis of quality protein maize (QPM) has been studied, the further exploration of the quantitative trait loci (QTL) underlying lysine content variation still needs more attention. RESULTS: Eight maize inbred lines with increased lysine content were used to construct four double haploid (DH) populations for identification of QTLs related to lysine content. The lysine content in the four DH populations exhibited continuous and normal distribution. A total of 12 QTLs were identified in a range of 4.42-12.66% in term of individual phenotypic variation explained (PVE) which suggested the quantitative control of lysine content in maize. Five main genes involved in maize lysine biosynthesis pathways in the QTL regions were identified in this study. CONCLUSIONS: The information presented will allow the exploration of candidate genes regulating lysine biosynthesis pathways and be useful for marker-assisted selection and gene pyramiding in high-lysine maize breeding programs.


Assuntos
Lisina , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Lisina/metabolismo , Fenótipo , Haploidia , Mapeamento Cromossômico
2.
Anal Chem ; 96(19): 7566-7576, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38684118

RESUMO

Genetically encoding proximal-reactive unnatural amino acids (PrUaas), such as fluorosulfate-l-tyrosine (FSY), into natural proteins of interest (POI) confer the POI with the ability to covalently bind to its interacting proteins (IPs). The PrUaa-incorporated POIs hold promise for blocking undesirable POI-IP interactions. Selecting appropriate PrUaa anchor sites is crucial, but it remains challenging with the current methodology, which heavily relies on crystallography to identify the proximal residues between the POIs and the IPs for the PrUaa anchorage. To address the challenge, here, we propose a footprinting-directed genetically encoded covalent binder (footprinting-GECB) approach. This approach employs carbene footprinting, a structural mass spectrometry (MS) technique that quantifies the extent of labeling of the POI following the addition of its IP, and thus identifies the responsive residues. By genetically encoding PrUaa into these responsive sites, POI variants with covalent bonding ability to its IP can be produced without the need for crystallography. Using the POI-IP model, KRAS/RAF1, we showed that engineering FSY at the footprint-assigned KRAS residue resulted in a KRAS variant that can bind irreversibly to RAF1. Additionally, we inserted FSY at the responsive residue in RAF1 upon footprinting the oncogenic KRASG12D/RAF1, which lacks crystal structure, and generated a covalent binder to KRASG12D. Together, we demonstrated that by adopting carbene footprinting to direct PrUaa anchorage, we can greatly expand the opportunities for designing covalent protein binders for PPIs without relying on crystallography. This holds promise for creating effective PPI inhibitors and supports both fundamental research and biotherapeutics development.


Assuntos
Metano , Metano/análogos & derivados , Metano/química , Humanos , Pegadas de Proteínas/métodos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ligação Proteica , Espectrometria de Massas
3.
J Acoust Soc Am ; 154(4): 2489-2498, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862571

RESUMO

In the context of global warming leading to rapidly changing Arctic sea ice and the environment, it is necessary to understand the statistical characteristics of noise under existing Arctic ocean environmental conditions. The data recorded from August 1, 2018 to November 2, 2019, on the Arctic Chukchi Plateau, have been studied to analyze the relationship between the ice transient events and the non-Gaussian statistics of under-ice noise. The ice-generated transient noise largely contributes to the under-ice noise environment, and the total under-ice noise exhibits non-Gaussian statistics due to the occurrence of these ice transients. The number of ice transients has a strong negative correlation with the characteristic index α, meaning that the higher the occurrence of transient events, the stronger the non-Gaussian statistics of under-ice noise. Stronger non-Gaussian noise with full ice coverage is observed compared to partial ice coverage. The under-ice noise in 0.5-1 kHz exhibits the strongest non-Gaussian statistics, followed by 1-4 kHz, while it is weakest in 20-500 Hz. The statistics of ice transients and under-ice noise have been provided in this paper, which can be used in sonar detection algorithms and have important significance for the performance prediction and optimization of sonar processors.

4.
Cell Death Dis ; 14(8): 557, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626036

RESUMO

Aerobic glycolysis has been considered as a hallmark of colorectal cancer (CRC). However, the potential functional regulators of glycolysis in CRC remains to be elucidated. In the current study, we found that Regenerating islet-derived protein 1-alpha (REG1α) was significantly increased in both CRC tissues and serum, and positively associated with CRC patients' lymph node metastasis, advanced tumor stage, and unfavorable prognosis. Ectopic expression of REG1α contributed to various tumorigenic properties, including cell proliferation, cell cycle, migration, invasion, and glycolysis. In contrast, REG1α deficiency in CRC cells attenuated malignant properties and glucose metabolism. Mechanically, REG1α promoted CRC proliferation and metastasis via ß-catenin/MYC axis-mediated glycolysis upregulation. Moreover, the malignant behaviors governed by REG1α could be effectively abolished by silencing of Wnt/ß-catenin/MYC axis or glycolysis process using specific inhibitors. Besides, REG1α expression was mediated by METTL3 in an m6A-dependent manner. Overall, our work defines a novel regulatory model of the METTL3/REG1α/ß-catenin/MYC axis in CRC, which indicates that REG1α could function as a novel biomarker and a potential therapeutic target for patients with CRC.


Assuntos
Neoplasias Colorretais , beta Catenina , Humanos , beta Catenina/genética , Glicólise/genética , Metástase Linfática , Neoplasias Colorretais/genética , Metiltransferases
5.
Front Plant Sci ; 14: 1174985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123853

RESUMO

Oil is one of the main components in maize kernels. Increasing the total oil content (TOC) is favorable to optimize feeding requirement by improving maize quality. To better understand the genetic basis of TOC, quantitative trait loci (QTL) in four double haploid (DH) populations were explored. TOC exhibited continuously and approximately normal distribution in the four populations. The moderate to high broad-sense heritability (67.00-86.60%) indicated that the majority of TOC variations are controlled by genetic factors. A total of 16 QTLs were identified across all chromosomes in a range of 3.49-30.84% in term of phenotypic variation explained. Among them, six QTLs were identified as the major QTLs that explained phenotypic variation larger than 10%. Especially, qOC-1-3 and qOC-2-3 on chromosome 9 were recognized as the largest effect QTLs with 30.84% and 21.74% of phenotypic variance, respectively. Seventeen well-known genes involved in fatty acid metabolic pathway located within QTL intervals. These QTLs will enhance our understanding of the genetic basis of TOC in maize and offer prospective routes to clone candidate genes regulating TOC for breeding program to cultivate maize varieties with the better grain quality.

6.
Mar Environ Res ; 188: 106024, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37209443

RESUMO

Conducting research on ocean ambient noise under different sea ice conditions is highly important for the comprehension of the rapidly changing Arctic. We present the first results of ambient noise and its relationship to environmental forcing during the open-water, ice transition and ice-covered periods on the Chukchi Plateau. The ambient noise level (ANL) in the 20 Hz to 2 kHz band is higher, intermediate and lower during the open-water, ice transition and ice-covered periods, respectively. During the ice-covered period, the ambient noise is dominated by the ice-generated noise due to sea ice activities and shows a negative correlation with temperature. Therefore, when the temperature decreases, the sea ice is prone to shrinking and cracking, thus increasing the sea ice activities and resulting in increased ice-generated noise; when the temperature rises and is relatively high in May and June, the ANL is lowest for the sea ice inhibition to wind waves and decreased sea ice activities induced by temperature rise. Sea ice is the most predominant environmental factor affecting Arctic ocean ambient noise, and the ANL can potentially increase due to a reduction in Arctic sea ice and increase in human activities caused by global climate change.


Assuntos
Mudança Climática , Ruído , Humanos , Regiões Árticas , Camada de Gelo , Água , Oceanos e Mares
7.
Small ; 19(31): e2207046, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36960674

RESUMO

The preparation of room temperature phosphorescent carbon dots still faces great challenges, especially in the case of carbon dots endowed of visible-light excitable room temperature phosphorescence (RTP). To date, a limited number of substrates have been exploited to synthesize room temperature phosphorescent carbon dots, and most of them can emit RTP only in solid state. Here, the synthesis of a composite obtained from the calcination of green carbon dots (g-CDs) blended with aluminum hydroxide (Al(OH)3 ) is reported. The resultant hybrid material g-CDs@Al2 O3 exhibits blue fluorescence and green RTP emissions in an on/off switch process at 365 nm. Notably, this composite manifests strong resistance to extreme acid and basic conditions up to 30 days of treatment. The dense structure of Al2 O3 formed by calcination contributes to the phosphorescent emission of g-CDs. Surprisingly, g-CDs@Al2 O3 can also emit yellow RTP under irradiation with white light. The multicolor emissions can be employed for anti-counterfeiting and information encryption. This work provides a straightforward approach to produce room temperature phosphorescent carbon dots for a wide range of applications.

8.
Abdom Radiol (NY) ; 48(4): 1290-1297, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36792725

RESUMO

PURPOSE: To evaluate the diagnostic values of liver stiffness (LS) measured by 2D-SWE, fibrosis index based on the four factors (FIB-4), aspartate aminotransferase to platelet ratio index (APRI), and GGT to PLT ratio (GPR) for assessing liver fibrosis and high-risk esophageal varices (EVs) in patients with autoimmune hepatitis-primary biliary cholangitis (AIH-PBC) overlap syndrome. METHODS: Data of 141 patients were retrospectively collected. Liver fibrosis was staged according to the Scheuer scoring system. The Spearman correlation coefficient was used for correlation analysis. Receiver operating characteristic (ROC) curves were plotted to evaluate the diagnostic performance. RESULTS: LS and FIB-4 were positively correlated with the fibrosis stage (r = 0.555 and 0.198, respectively). LS had significantly higher areas under the ROC curves (AUROCs) values than FIB-4 for predicting advanced fibrosis (0.818 vs. 0.567, P < 0.001), cirrhosis (0.879 vs. 0.637, P < 0.001), whereas LS and FIB-4 similarly predicted significant fibrosis (0.748 vs. 0.638, P = 0.071) and high-risk EVs (0.731 vs. 0.659, P = 0.303). The optimal cut-off values of 2D-SWE for detecting significant fibrosis, advanced fibrosis, cirrhosis, and high-risk EVs were 8.7 kPa, 12.8 kPa, 14.0 kPa, and 11.0 kPa, respectively. LS values were influenced by fibrosis stage, serum GGT, albumin, and total bilirubin levels. The overall concordance rate of the liver stiffness vs. Scheuer stages was 49.65%. CONCLUSIONS: 2D-SWE shows significantly greater diagnostic accuracy than serum fibrosis indexes for diagnosing advanced fibrosis and cirrhosis in patients with AIH-PBC overlap syndrome.


Assuntos
Técnicas de Imagem por Elasticidade , Hepatite Autoimune , Cirrose Hepática Biliar , Humanos , Hepatite Autoimune/complicações , Hepatite Autoimune/diagnóstico por imagem , Cirrose Hepática Biliar/patologia , Estudos Retrospectivos , Cirrose Hepática/diagnóstico por imagem , Fibrose , Síndrome , Fígado/diagnóstico por imagem , Fígado/patologia
9.
Front Microbiol ; 13: 950325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466659

RESUMO

Chronic superficial gastritis (CSG) and intestinal metaplasia (IM) can further develop into gastric cancer, which seriously endangers the health of people all over the world. In this study, the differences in gastric microbiota between CSG patients and IM patients were detected by 16S rRNA gene sequencing. As the expression levels of mucin and CDX2 are closely related to IM, the expression differences of mucin (MUC2 and MUC5AC) and CDX2 in the gastric mucosa of CSG patients and IM patients were detected by Western blot and qRT-PCR. The results showed that both Faith_pd and Observed_species indexes of microbiota in the gastric juice of CSG patients were significantly higher than those of IM patients. At the genus level, Thermus and Anoxybacillus were dominant in the gastric juice of IM patients, and Helicobacter was dominant in the gastric juice of CSG patients. Non-metric multidimensional scaling (NMDS) demonstrated that the dispersion of samples in the CSG group is greater than that in the IM group, and some samples in the CSG group are clustered with samples in the IM group. The KEGG metabolic pathway difference analysis of gastric juice microbiota in CSG and IM patients revealed that the gastric juice microbiota in the CSG and IM patients were significantly enriched in the amino acid metabolism, carbohydrate metabolism, and metabolism of cofactors and vitamins, and the functional differences between the two groups were mainly concentrated in the bacterial secretion system (VirB1, VirB2, VirB3, VirD2, and VirD4). In conclusion, there are significant differences in gastric microbiota and mucosal function between the CSG and IM patients. Moreover, the results of this study may provide a new means for the detection of CSG and IM and a new direction for the prevention and treatment of CSG and IM.

10.
Front Oncol ; 11: 711207, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621671

RESUMO

Hypoxia is a common feature of solid tumors including stomach cancer (SC) and is closely associated with cancer malignant progression. N6-methyladenosine (m6A), a common modification on RNA, is involved in the regulation of RNA fate and hypoxic responses in cancers. However, the interaction between m6A reader insulin-like growth factor-II mRNA-binding protein 3 (IGF2BP3) and SC hypoxic microenvironment is poorly defined. In the present study, expression levels of IGF2BP3 and hypoxia inducible factor-1α (HIF1A) were examined by bioinformatics analysis and RT-qPCR and western blot assays. Cell migratory ability was assessed through Transwell and wound healing assays. The angiogenic potential was evaluated by VEGF secretion, tube formation, and chick embryo chorioallantoic membrane (CAM) assays. The interaction between IGF2BP3 and HIF1A was explored using bioinformatics analysis and RIP and luciferase reporter assays. The results showed that IGF2BP3 and HIF1A were highly expressed in SC tissues and hypoxia-treated SC cells. IGF2BP3 knockdown inhibited hypoxia-induced cell migration and angiogenesis in SC. IGF2BP3 positively regulated HIF1A expression by directly binding to a specific m6A site in the coding region of HIF1A mRNA in SC cells. HIF1A overexpression abrogated the effects of IGF2BP3 knockdown on hypoxia-induced cell migration and angiogenesis in SC. In conclusion, IGF2BP3 knockdown inhibited hypoxia-induced cell migration and angiogenesis by down-regulating HIF1A in SC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA