Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Tissue Cell ; 90: 102520, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39137536

RESUMO

Heat acclimation (HA) is found to help decrease the incidence of heat-related illnesses such as heat syncope and exertional heat stroke. However, the response of vascular endothelial cells to HA remain to be elucidated. In this study, mouse brain microvascular endothelial cells (bEnd.3), human umbilical vein endothelial cells (HUVEC), and human aortic endothelial cells (HAEC) were selected. The cells were first subjected to HA at 40 ℃ for 2 h per day for 3 days, and then subjected to heat stress at 43 ℃ for 2 h or 4 h. After heat stress, HA-pretreated cells showed a significant increase in cell viability, cell integrity, a decrease in the proportion of S phase cells, cell apoptosis, and cytoskeletal shrinkage compared with the cells without HA pretreatment. Additionally, the expression of VEGF, ICAM-1, iNOS and EPO in HA-pretreated cells significantly increased. We also presented evidence that HA upregulated HSP70 and bcl-2, while downregulated p-p53 and bax. Notably, the suppression of HSP70 expression attenuated the protective role of heat acclimation. Furthermore, HA mitigated injuries in vital organs of mice exposed to heat stress. Conclusively, these findings indicated the HA can increase the vitality of vascular endothelial cells after heat stress, partially restore the function of vascular endothelial cells, and this protective effect may be related to the upregulation of HSP70 expression.

2.
Front Public Health ; 12: 1384544, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38813424

RESUMO

Introduction: Extreme heat events caused by occupational exposure and heat waves are becoming more common. However, the molecular changes underlying the response to heat exposure in humans remain to be elucidated. Methods: This study used longitudinal multi-omics profiling to assess the impact of acute heat exposure (50°C for 30 min) in 24 subjects from a mine rescue team. Intravenous blood samples were collected before acute heat exposure (baseline) and at 5 min, 30 min, 1 h, and 24 h after acute heat exposure (recovery). In-depth multi-omics profiling was performed on each sample, including plasma proteomics (untargeted) and metabolomics (untargeted). Results: After data curation and annotation, the final dataset contained 2,473 analytes, including 478 proteins and 1995 metabolites. Time-series analysis unveiled an orchestrated molecular choreography of changes involving the immune response, coagulation, acid-base balance, oxidative stress, cytoskeleton, and energy metabolism. Further analysis through protein-protein interactions and network analysis revealed potential regulators of acute heat exposure. Moreover, novel blood-based analytes that predicted change in cardiopulmonary function after acute heat exposure were identified. Conclusion: This study provided a comprehensive investigation of the dynamic molecular changes that underlie the complex physiological processes that occur in human males who undergo heat exposure. Our findings will help health impact assessment of extreme high temperature and inspire future mechanistic and clinical studies.


Assuntos
Proteômica , Humanos , Masculino , Estudos Longitudinais , Adulto , Metabolômica , Temperatura Alta/efeitos adversos , Multiômica
3.
Nano Lett ; 24(18): 5403-5412, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38669639

RESUMO

The efficacy of electrical stimulation facilitating peripheral nerve regeneration is evidenced extensively, while the associated secondary damage resulting from repeated electrode invasion and indiscriminate stimulation is inevitable. Here, we present an optogenetics strategy that utilizes upconversion nanoparticles (UCNPs) to convert deeply penetrating near-infrared excitation into blue emission, which activates an adeno-associated virus-encoding ChR2 photoresponsive ion channel on cell membranes. The induced Ca2+ flux, similar to the ion flux in the electrical stimulation approach, efficiently regulates viability and proliferation, secretion of nerve growth factor, and neural function of RSC96 cells. Furthermore, deep near-infrared excitation is harnessed to stimulate autologous Schwann cells in situ via a UCNP-composited scaffold, which enhances nerve sprouting and myelination, consequently promoting functional recovery, electrophysiological restoration, and reinnervation of damaged nerves. This developed postoperatively noninvasive optogenetics strategy presents a novel, minimally traumatic, and enduring therapeutic stimulus to effectively promote peripheral nerve repair.


Assuntos
Nanopartículas , Regeneração Nervosa , Optogenética , Células de Schwann , Nervo Isquiático , Animais , Optogenética/métodos , Nanopartículas/química , Ratos , Dependovirus/genética , Linhagem Celular , Traumatismos dos Nervos Periféricos/terapia
4.
Physiol Rep ; 12(3): e15946, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38339831

RESUMO

Occupational exposure to extreme high temperatures and the increasing global temperatures necessitates a deeper understanding of the impact of heat exposure on human health. However, the molecular mechanisms underlying the response of monocytes and neutrophils to heat exposure in occupational population remain to be fully elucidated. This study used longitudinal transcriptome to assess the impact of acute heat exposure (50°C for 30 min) in 10 subjects from a mine rescue team before acute heat exposure (baseline) and at 5 min, 30 min, 1 h, and 24 h after acute heat exposure (recovery). The time-series analysis revealed a coordinated molecular choreography of changes involving inflammation, coagulation, extracellular matrix, and energy metabolism. Importantly, the study characterized the inflammatory signature associated with heat exposure in monocytes and neutrophils, as evidenced by the rapid activation of the inflammation-related transcriptome following heat exposure. Additionally, we pinpointed potential regulators, such as NR4A1, FOSL1, EGR3, and ATF3. In summary, the study suggested that the initial response to heat stress in monocytes and neutrophils from mine rescue team member was primarily characterized by a pro-inflammatory stress response, which could potentially lead to the development of inflammation and ultimately result in a systemic inflammatory response in heatstroke.


Assuntos
Monócitos , Transcriptoma , Humanos , Neutrófilos , Inflamação/genética , Resposta ao Choque Térmico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA