Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 272: 116074, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350214

RESUMO

The effect of underwater noise environment generated by equipment in industrial recirculating aquaculture systems (RAS) on fish is evident. However, different equipment generate noise in various frequency ranges. Understanding the effects of different frequency ranges noise on cultured species is important for optimizing the underwater acoustic environment in RAS. Given this, the effects of underwater noise across various frequency bands in RAS on the growth, physiology, and collective behavior of juvenile largemouth bass (Micropterus salmoides) were comprehensively evaluated here. In this study, three control groups were established: low-frequency noise group (80-1000 Hz, 117 dB re 1µPa RMS), high-frequency noise group (1-19 kHz, 117 dB re 1µPa RMS), and ambient group. During a 30-day experiment, it was found that: 1) industrial RAS noise with different frequency bands all had a certain inhibitory effect on the growth of fish, which the weight gain rate and product of length and depth of caudal peduncle in the ambient group were significantly higher than those of the two noise groups, with the low-frequency noise group showing significantly lower values than the high-frequency noise group; 2) industrial RAS noise had a certain degree of adverse effect on the digestive ability of fish, with the low-frequency noise group being more affected; 3) industrial RAS noise affected the collective feeding behavior of fish, with the collective feeding signal propagation efficiency and feeding intensity of the noise groups being significantly lower than those of the ambient group, and the high-frequency noise group performing better than the low-frequency noise group as a whole therein. From the above, the underwater noise across different frequency bands generated by equipment operation in industrial RAS both had an impact on juvenile largemouth bass, with the low-frequency noise group being more severely affected.


Assuntos
Bass , Animais , Bass/fisiologia , Aquicultura
2.
Proc Biol Sci ; 287(1938): 20202172, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33171081

RESUMO

Foraging animals must balance benefits of food acquisition with costs induced by a post-prandial reduction in performance. Eating to satiation can lead to a reduction in locomotor and escape performance, which increases risk should a threat subsequently arises, but limiting feeding behaviour may be maladaptive if food intake is unnecessarily reduced in the prediction of threats that do not arise. The efficacy of the trade-off between continued and interrupted feeding therefore relies on information about the future risk, which is imperfect. Here, we find that black carp (Mylopharyngodon piceus) can balance this trade-off using an a posteriori strategy; by eating to satiation but regurgitating already ingested food when a threat arises. While degrees of satiation (DS) equal to or greater than 60% reduce elements of escape performance (turning angle, angular velocity, distance moved, linear velocity), at 40% DS or lower, performance in these tasks approaches levels comparable to that at 0% satiation. After experiencing a chasing event, we find that fish are able to regurgitate already ingested food, thereby changing the amount of food in their gastrointestinal tract to consistent levels that maintain high escape performance. Remarkably, regurgitation results in degrees of satiation between 40 and 60% DS, regardless of whether they had previously fed to 40, 60 or 100% DS. Using this response, fish are able to maximize food intake, but regurgitate extra food to maintain escape performance when they encounter a threat. This novel strategy may be effective for continual grazers and species with imperfect information about the level of threat in their environment.


Assuntos
Carpas/fisiologia , Animais , Comportamento Animal , Cyprinidae , Ingestão de Alimentos , Comportamento Alimentar , Alimentos , Água Doce , Período Pós-Prandial , Saciação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA