RESUMO
Long-lasting pain stimuli can trigger maladaptive changes in the spinal cord, reminiscent of plasticity associated with memory formation. Metabolic coupling between astrocytes and neurons has been implicated in neuronal plasticity and memory formation in the central nervous system, but neither its involvement in pathological pain nor in spinal plasticity has been tested. Here we report a form of neuroglia signalling involving spinal astrocytic glycogen dynamics triggered by persistent noxious stimulation via upregulation of the Protein Targeting to Glycogen (PTG) in spinal astrocytes. PTG drove glycogen build-up in astrocytes, and blunting glycogen accumulation and turnover by Ptg gene deletion reduced pain-related behaviours and promoted faster recovery by shortening pain maintenance in mice. Furthermore, mechanistic analyses revealed that glycogen dynamics is a critically required process for maintenance of pain by facilitating neuronal plasticity in spinal lamina 1 neurons. In summary, our study describes a previously unappreciated mechanism of astrocyte-neuron metabolic communication through glycogen breakdown in the spinal cord that fuels spinal neuron hyperexcitability.
Assuntos
Astrócitos , Dor , Camundongos , Animais , Astrócitos/metabolismo , Dor/metabolismo , Dor/patologia , Neurônios/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Glicogênio/metabolismoRESUMO
Corticospinal tract (CST) neurons innervate the deep spinal dorsal horn to sustain chronic neuropathic pain. The majority of neurons targeted by the CST are interneurons expressing the transcription factor c-Maf. Here, we used intersectional genetics to decipher the function of these neurons in dorsal horn sensory circuits. We find that excitatory c-Maf (c-MafEX) neurons receive sensory input mainly from myelinated fibers and target deep dorsal horn parabrachial projection neurons and superficial dorsal horn neurons, thereby connecting non-nociceptive input to nociceptive output structures. Silencing c-MafEX neurons has little effect in healthy mice but alleviates mechanical hypersensitivity in neuropathic mice. c-MafEX neurons also receive input from inhibitory c-Maf and parvalbumin neurons, and compromising inhibition by these neurons caused mechanical hypersensitivity and spontaneous aversive behaviors reminiscent of c-MafEX neuron activation. Our study identifies c-MafEX neurons as normally silent second-order nociceptors that become engaged in pathological pain signaling upon loss of inhibitory control.
Assuntos
Neuralgia , Corno Dorsal da Medula Espinal , Animais , Camundongos , Corno Dorsal da Medula Espinal/patologia , Medula Espinal , Células do Corno Posterior/fisiologia , Transmissão Sináptica , Interneurônios/fisiologia , Proteínas Proto-Oncogênicas c-mafRESUMO
Recoding of UGA codons as selenocysteine (Sec) codons in selenoproteins depends on a selenocysteine insertion sequence (SECIS) in the 3'-UTR of mRNAs of eukaryotic selenoproteins. SECIS-binding protein 2 (SECISBP2) increases the efficiency of this process. Pathogenic mutations in SECISBP2 reduce selenoprotein expression and lead to phenotypes associated with the reduction of deiodinase activities and selenoprotein N expression in humans. Two functions have been ascribed to SECISBP2: binding of SECIS elements in selenoprotein mRNAs and facilitation of co-translational Sec insertion. To separately probe both functions, we established here two mouse models carrying two pathogenic missense mutations in Secisbp2 previously identified in patients. We found that the C696R substitution in the RNA-binding domain abrogates SECIS binding and does not support selenoprotein translation above the level of a complete Secisbp2 null mutation. The R543Q missense substitution located in the selenocysteine insertion domain resulted in residual activity and caused reduced selenoprotein translation, as demonstrated by ribosomal profiling to determine the impact on UGA recoding in individual selenoproteins. We found, however, that the R543Q variant is thermally unstable in vitro and completely degraded in the mouse liver in vivo, while being partially functional in the brain. The moderate impairment of selenoprotein expression in neurons led to astrogliosis and transcriptional induction of genes associated with immune responses. We conclude that differential SECISBP2 protein stability in individual cell types may dictate clinical phenotypes to a much greater extent than molecular interactions involving a mutated amino acid in SECISBP2.
Assuntos
Erros Inatos do Metabolismo/genética , Mutação de Sentido Incorreto , Proteínas de Ligação a RNA/metabolismo , Selenoproteínas/biossíntese , Animais , Sítios de Ligação , Encéfalo/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Ligação Proteica , Estabilidade Proteica , Proteólise , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Ribossomos/metabolismo , Selenocisteína/metabolismoRESUMO
In the version of this article initially published, the Supplementary Data file was an incorrect version. The correct version is now provided. The error has been corrected in the HTML and PDF version of the article.
RESUMO
Cholesterol is a major constituent of myelin membranes, which insulate axons and allow saltatory conduction. Therefore, Schwann cells, the myelinating glia of the peripheral nervous system, need to produce large amounts of cholesterol. Here, we define a crucial role of the transcription factor Maf in myelination and cholesterol biosynthesis and show that Maf acts downstream from Neuregulin1 (Nrg1). Maf expression is induced when Schwann cells begin myelination. Genetic ablation of Maf resulted in hypomyelination that resembled mice with defective Nrg1 signaling. Importantly, loss of Maf or Nrg1 signaling resulted in a down-regulation of the cholesterol synthesis program, and Maf directly binds to enhancers of cholesterol synthesis genes. Furthermore, we identified the molecular mechanisms by which Nrg1 signaling regulates Maf levels. Transcription of Maf depends on calmodulin-dependent kinases downstream from Nrg1, whereas Nrg1-MAPK signaling stabilizes Maf protein. Our results delineate a novel signaling cascade regulating cholesterol synthesis in myelinating Schwann cells.
Assuntos
Colesterol/biossíntese , Bainha de Mielina/metabolismo , Neuregulina-1/metabolismo , Proteínas Proto-Oncogênicas c-maf/metabolismo , Células de Schwann/metabolismo , Transdução de Sinais , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Colesterol/genética , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-maf/genética , Ratos , Ratos WistarRESUMO
The transcription factor c-Maf induces the anti-inflammatory cytokine IL-10 in CD4+ T cells in vitro. However, the global effects of c-Maf on diverse immune responses in vivo are unknown. Here we found that c-Maf regulated IL-10 production in CD4+ T cells in disease models involving the TH1 subset of helper T cells (malaria), TH2 cells (allergy) and TH17 cells (autoimmunity) in vivo. Although mice with c-Maf deficiency targeted to T cells showed greater pathology in TH1 and TH2 responses, TH17 cell-mediated pathology was reduced in this context, with an accompanying decrease in TH17 cells and increase in Foxp3+ regulatory T cells. Bivariate genomic footprinting elucidated the c-Maf transcription-factor network, including enhanced activity of NFAT; this led to the identification and validation of c-Maf as a negative regulator of IL-2. The decreased expression of the gene encoding the transcription factor RORγt (Rorc) that resulted from c-Maf deficiency was dependent on IL-2, which explained the in vivo observations. Thus, c-Maf is a positive and negative regulator of the expression of cytokine-encoding genes, with context-specific effects that allow each immune response to occur in a controlled yet effective manner.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Regulação da Expressão Gênica/imunologia , Redes Reguladoras de Genes/imunologia , Interleucina-2/biossíntese , Proteínas Proto-Oncogênicas c-maf/imunologia , Animais , Interleucina-2/imunologia , CamundongosRESUMO
Painful mechanical stimuli activate multiple peripheral sensory afferent subtypes simultaneously, including nociceptors and low-threshold mechanoreceptors (LTMRs). Using an optogenetic approach, we demonstrate that LTMRs do not solely serve as touch receptors but also play an important role in acute pain signaling. We show that selective activation of neuropeptide Y receptor-2-expressing (Npy2r) myelinated A-fiber nociceptors evokes abnormally exacerbated pain, which is alleviated by concurrent activation of LTMRs in a frequency-dependent manner. We further show that spatial summation of single action potentials from multiple NPY2R-positive afferents is sufficient to trigger nocifensive paw withdrawal, but additional simultaneous sensory input from LTMRs is required for normal well-coordinated execution of this reflex. Thus, our results show that combinatorial coding of noxious and tactile sensory input is required for normal acute mechanical pain signaling. Additionally, we established a causal link between precisely defined neural activity in functionally identified sensory neuron subpopulations and nocifensive behavior and pain.
Assuntos
Potenciais de Ação , Dor Aguda/genética , Mecanorreceptores/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Neurônios/metabolismo , Nociceptividade/fisiologia , Nociceptores/metabolismo , Somação de Potenciais Pós-Sinápticos , Animais , Comportamento Animal , Gânglios Espinais/citologia , Imuno-Histoquímica , Camundongos , Fibras Nervosas Mielinizadas/fisiologia , Dor Nociceptiva , Optogenética , Dor , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Reflexo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tato/fisiologiaRESUMO
Body temperature homeostasis is critical for survival and requires precise regulation by the nervous system. The hypothalamus serves as the principal thermostat that detects and regulates internal temperature. We demonstrate that the ion channel TRPM2 [of the transient receptor potential (TRP) channel family] is a temperature sensor in a subpopulation of hypothalamic neurons. TRPM2 limits the fever response and may detect increased temperatures to prevent overheating. Furthermore, chemogenetic activation and inhibition of hypothalamic TRPM2-expressing neurons in vivo decreased and increased body temperature, respectively. Such manipulation may allow analysis of the beneficial effects of altered body temperature on diverse disease states. Identification of a functional role for TRP channels in monitoring internal body temperature should promote further analysis of molecular mechanisms governing thermoregulation and foster the genetic dissection of hypothalamic circuits involved with temperature homeostasis.
Assuntos
Regulação da Temperatura Corporal/fisiologia , Febre/fisiopatologia , Temperatura Alta , Hipotermia/fisiopatologia , Área Pré-Óptica/fisiologia , Canais de Cátion TRPM/fisiologia , Animais , Regulação da Temperatura Corporal/genética , Feminino , Febre/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neurônios/fisiologia , Área Pré-Óptica/citologia , Canais de Cátion TRPM/genéticaRESUMO
Sensitization of the capsaicin receptor TRPV1 is central to the initiation of pathological forms of pain, and multiple signaling cascades are known to enhance TRPV1 activity under inflammatory conditions. How might detrimental escalation of TRPV1 activity be counteracted? Using a genetic-proteomic approach, we identify the GABAB1 receptor subunit as bona fide inhibitor of TRPV1 sensitization in the context of diverse inflammatory settings. We find that the endogenous GABAB agonist, GABA, is released from nociceptive nerve terminals, suggesting an autocrine feedback mechanism limiting TRPV1 sensitization. The effect of GABAB on TRPV1 is independent of canonical G protein signaling and rather relies on close juxtaposition of the GABAB1 receptor subunit and TRPV1. Activating the GABAB1 receptor subunit does not attenuate normal functioning of the capsaicin receptor but exclusively reverts its sensitized state. Thus, harnessing this mechanism for anti-pain therapy may prevent adverse effects associated with currently available TRPV1 blockers.
Assuntos
Comunicação Autócrina , Neurônios/metabolismo , Dor/metabolismo , Receptores de GABA-B/metabolismo , Canais de Cátion TRPV/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Células Cultivadas , Retroalimentação , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
Human sensory neurons are inaccessible for functional examination, and thus little is known about the mechanisms mediating touch sensation in humans. Here we demonstrate that the mechanosensitivity of human embryonic stem (hES) cell-derived touch receptors depends on PIEZO2. To recapitulate sensory neuron development in vitro, we established a multistep differentiation protocol and generated sensory neurons via the intermediate production of neural crest cells derived from hES cells or human induced pluripotent stem (hiPS) cells. The generated neurons express a distinct set of touch receptor-specific genes and convert mechanical stimuli into electrical signals, their most salient characteristic in vivo. Strikingly, mechanosensitivity is lost after CRISPR/Cas9-mediated PIEZO2 gene deletion. Our work establishes a model system that resembles human touch receptors, which may facilitate mechanistic analysis of other sensory subtypes and provide insight into developmental programs underlying sensory neuron diversity.
Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Canais Iônicos/fisiologia , Mecanorreceptores/fisiologia , Mecanotransdução Celular/fisiologia , Células Receptoras Sensoriais/fisiologia , Tato/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Diferenciação Celular/fisiologia , Feminino , Humanos , Canais Iônicos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/fisiologia , Crista Neural/citologiaRESUMO
The olfactory bulb (OB) receives odor information from the olfactory epithelium and relays this to the olfactory cortex. Using a mouse model, we found that development and maturation of OB interneurons depends on the zinc finger homeodomain factor teashirt zinc finger family member 1 (TSHZ1). In mice lacking TSHZ1, neuroblasts exhibited a normal tangential migration to the OB; however, upon arrival to the OB, the neuroblasts were distributed aberrantly within the radial dimension, and many immature neuroblasts failed to exit the rostral migratory stream. Conditional deletion of Tshz1 in mice resulted in OB hypoplasia and severe olfactory deficits. We therefore investigated olfaction in human subjects from families with congenital aural atresia that were heterozygous for TSHZ1 loss-of-function mutations. These individuals displayed hyposmia, which is characterized by impaired odor discrimination and reduced olfactory sensitivity. Microarray analysis, in situ hybridization, and ChIP revealed that TSHZ1 bound to and regulated expression of the gene encoding prokineticin receptor 2 (PROKR2), a G proteincoupled receptor essential for OB development. Mutations in PROKR2 lead to Kallmann syndrome, characterized by anosmia and hypogonadotrophic hypogonadism. Our data indicate that TSHZ1 is a key regulator of mammalian OB development and function and controls the expression of molecules involved in human Kallmann syndrome.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Síndrome de Kallmann/genética , Bulbo Olfatório/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Olfato , Adolescente , Adulto , Animais , Estudos de Casos e Controles , Diferenciação Celular , Movimento Celular , Criança , Anormalidades Congênitas/genética , Orelha/anormalidades , Proteínas do Olho/metabolismo , Feminino , Expressão Gênica , Estudos de Associação Genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/fisiologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/patologia , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , TranscriptomaRESUMO
During late Schwann cell development, immature Schwann cells segregate large axons from bundles, a process called "axonal radial sorting." Here we demonstrate that canonical Wnt signals play a critical role in radial sorting and assign a role to Wnt and Rspondin ligands in this process. Mice carrying ß-catenin loss-of-function mutations show a delay in axonal sorting; conversely, gain-of-function mutations result in accelerated sorting. Sorting deficits are accompanied by abnormal process extension, differentiation, and aberrant cell cycle exit of the Schwann cells. Using primary cultured Schwann cells, we analyze the upstream effectors, Wnt and Rspondin ligands that initiate signaling, and downstream genetic programs that mediate the Wnt response. Our analysis contributes to a better understanding of the mechanisms of Schwann cell development and fate decisions.
Assuntos
Axônios/fisiologia , Linhagem da Célula/fisiologia , Células de Schwann/fisiologia , Trombospondinas/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Animais , Western Blotting , Primers do DNA/genética , Citometria de Fluxo , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Análise em Microsséries , Mutação/genética , Comunicação Parácrina/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Nervo Isquiático/fisiologia , Nervo Isquiático/ultraestrutura , beta Catenina/genéticaRESUMO
Spatial and temporal cues govern the genesis of a diverse array of neurons located in the dorsal spinal cord, including dI1-dI6, dIL(A), and dIL(B) subtypes, but their physiological functions are poorly understood. Here we generated a new line of conditional knock-out (CKO) mice, in which the homeobox gene Tlx3 was removed in dI5 and dIL(B) cells. In these CKO mice, development of a subset of excitatory neurons located in laminae I and II was impaired, including itch-related GRPR-expressing neurons, PKCγ-expressing neurons, and neurons expressing three neuropeptide genes: somatostatin, preprotachykinin 1, and the gastrin-releasing peptide. These CKO mice displayed marked deficits in generating nocifensive motor behaviors evoked by a range of pain-related or itch-related stimuli. The mutants also failed to exhibit escape response evoked by dynamic mechanical stimuli but retained the ability to sense innocuous cooling and/or warm. Thus, our studies provide new insight into the ontogeny of spinal neurons processing distinct sensory modalities.
Assuntos
Gânglios Espinais/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios/classificação , Neurônios/fisiologia , Sensação/genética , Animais , Animais Recém-Nascidos , Capsaicina/toxicidade , Contagem de Células , Cloroquina/toxicidade , Embrião de Mamíferos , Peptídeo Liberador de Gastrina/genética , Peptídeo Liberador de Gastrina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Oligopeptídeos/toxicidade , Dor/induzido quimicamente , Dor/genética , Dor/metabolismo , Estimulação Física/efeitos adversos , Proteína Quinase C/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Prurido/etiologia , Prurido/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Somatostatina/genética , Somatostatina/metabolismo , Taquicininas/genética , Taquicininas/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismoRESUMO
The protease ß-secretase 1 (Bace1) was identified through its critical role in production of amyloid-ß peptides (Aß), the major component of amyloid plaques in Alzheimer's disease. Bace1 is considered a promising target for the treatment of this pathology, but processes additional substrates, among them Neuregulin-1 (Nrg1). Our biochemical analysis indicates that Bace1 processes the Ig-containing ß1 Nrg1 (IgNrg1ß1) isoform. We find that a graded reduction in IgNrg1 signal strength in vivo results in increasingly severe deficits in formation and maturation of muscle spindles, a proprioceptive organ critical for muscle coordination. Further, we show that Bace1 is required for formation and maturation of the muscle spindle. Finally, pharmacological inhibition and conditional mutagenesis in adult animals demonstrate that Bace1 and Nrg1 are essential to sustain muscle spindles and to maintain motor coordination. Our results assign to Bace1 a role in the control of coordinated movement through its regulation of muscle spindle physiology, and implicate IgNrg1-dependent processing as a molecular mechanism.
Assuntos
Secretases da Proteína Precursora do Amiloide/fisiologia , Ácido Aspártico Endopeptidases/fisiologia , Fusos Musculares/crescimento & desenvolvimento , Fusos Musculares/fisiologia , Neuregulina-1/fisiologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/deficiência , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/deficiência , Ácido Aspártico Endopeptidases/genética , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Fusos Musculares/efeitos dos fármacos , Neuregulina-1/deficiência , Neuregulina-1/genética , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Inibidores de Proteases/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Processamento de Proteína Pós-Traducional , Desempenho Psicomotor/fisiologia , Pirimidinas/farmacologia , Transdução de Sinais , Tiazinas/farmacologiaRESUMO
Skeletal muscle growth and regeneration rely on myogenic progenitor and satellite cells, the stem cells of postnatal muscle. Elimination of Notch signals during mouse development results in premature differentiation of myogenic progenitors and formation of very small muscle groups. Here we show that this drastic effect is rescued by mutation of the muscle differentiation factor MyoD. However, rescued myogenic progenitors do not assume a satellite cell position and contribute poorly to myofiber growth. The disrupted homing is due to a deficit in basal lamina assembly around emerging satellite cells and to their impaired adhesion to myofibers. On a molecular level, emerging satellite cells deregulate the expression of basal lamina components and adhesion molecules like integrin α7, collagen XVIIIα1, Megf10, and Mcam. We conclude that Notch signals control homing of satellite cells, stimulating them to contribute to their own microenvironment and to adhere to myofibers.
Assuntos
Músculo Esquelético/citologia , Receptores Notch/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Animais , Adesão Celular , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Receptores Notch/genéticaRESUMO
The proto-oncogene c-Maf has been shown to be an important transcriptional regulator in the differentiation of a number of cellular contexts, like the eye and hematopoietic system. Here we discuss the recent progress made in understanding c-Maf function in the nervous system.
Assuntos
Proteínas Proto-Oncogênicas c-maf/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Humanos , Mecanorreceptores/fisiologia , Proto-Oncogene Mas , Fenômenos Fisiológicos da Pele , VibraçãoRESUMO
The sense of touch relies on detection of mechanical stimuli by specialized mechanosensory neurons. The scarcity of molecular data has made it difficult to analyze development of mechanoreceptors and to define the basis of their diversity and function. We show that the transcription factor c-Maf/c-MAF is crucial for mechanosensory function in mice and humans. The development and function of several rapidly adapting mechanoreceptor types are disrupted in c-Maf mutant mice. In particular, Pacinian corpuscles, a type of mechanoreceptor specialized to detect high-frequency vibrations, are severely atrophied. In line with this, sensitivity to high-frequency vibration is reduced in humans carrying a dominant mutation in the c-MAF gene. Thus, our work identifies a key transcription factor specifying development and function of mechanoreceptors and their end organs.
Assuntos
Mecanorreceptores/citologia , Mecanorreceptores/fisiologia , Proteínas Proto-Oncogênicas c-maf/metabolismo , Tato , Animais , Gânglios Espinais/citologia , Gânglios Espinais/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Camundongos , Mutação , Corpúsculos de Pacini/citologia , Corpúsculos de Pacini/fisiologia , Proteínas Proto-Oncogênicas c-maf/genética , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Pele/inervação , VibraçãoRESUMO
The nonreceptor tyrosine phosphatase Shp2 (PTPN11) has been implicated in tyrosine kinase, cytokine, and integrin receptor signaling. We show here that conditional mutation of Shp2 in neural crest cells and in myelinating Schwann cells resulted in deficits in glial development that are remarkably similar to those observed in mice mutant for Neuregulin-1 (Nrg1) or the Nrg1 receptors, ErbB2 and ErbB3. In cultured Shp2 mutant Schwann cells, Nrg1-evoked cellular responses like proliferation and migration were virtually abolished, and Nrg1-dependent intracellular signaling was altered. Pharmacological inhibition of Src family kinases mimicked all cellular and biochemical effects of the Shp2 mutation, implicating Src as a primary Shp2 target during Nrg1 signaling. Together, our genetic and biochemical analyses demonstrate that Shp2 is an essential component in the transduction of Nrg1/ErbB signals.