Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Synth Biol (Oxf) ; 9(1): ysae001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38249314

RESUMO

The FdeR regulator has been reported as a transcriptional activator dependent on the interaction with naringenin. Previously, FdeR and its cognate promoter were used to construct naringenin-sensitive sensors, though no correlation was associated between the FdeR level of expression and outputs. Therefore, to understand this correlation, we constructed a circuit with FdeR expression adjusted by the arabinose concentration through an AraC-PBAD system and the FdeR-regulated promoter controlling the expression of GFP. We observed a significant reduction in the activity of the target promoter by increasing FdeR expression, indicating that although FdeR has been primarily classified as a transcriptional activator, it also represses transcription. Leveraging the bifunctional feature of FdeR, acting as both transcriptional activator and repressor, we demonstrated that this genetic circuit, when previously switched on by naringenin, can be switched off by inducing an increased FdeR expression level. This engineered system functioned as a NIMPLY gate, effectively decreasing GFP expression by 50% when arabinose was added without removing naringenin from the medium. Exploiting FdeR versatility, this study demonstrates an innovative application of this transcriptional factor for developing novel NIMPLY gates activated by a molecule with low toxicity and nutraceutical properties that may be important for several applications. Graphical Abstract.

2.
Front Bioeng Biotechnol ; 9: 730967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604189

RESUMO

Control of gene expression is crucial for several biotechnological applications, especially for implementing predictable and controllable genetic circuits. Such circuits are often implemented with a transcriptional regulator activated by a specific signal. These regulators should work independently of the host machinery, with low gratuitous induction or crosstalk with host components. Moreover, the signal should also be orthogonal, recognized only by the regulator with minimal interference with the host operation. In this context, transcriptional regulators activated by plant metabolites as flavonoids emerge as candidates to control gene expression in bacteria. However, engineering novel circuits requires the characterization of the genetic parts (e.g., genes, promoters, ribosome binding sites, and terminators) in the host of interest. Therefore, we decomposed the QdoR regulatory system of B. subtilis, responsive to the flavonoid quercetin, and reassembled its parts into genetic circuits programmed to have different levels of gene expression and noise dependent on the concentration of quercetin. We showed that only one of the promoters regulated by QdoR worked well in E. coli, enabling the construction of other circuits induced by quercetin. The QdoR expression was modulated with constitutive promoters of different transcriptional strengths, leading to low expression levels when QdoR was highly expressed and vice versa. E. coli strains expressing high and low levels of QdoR were mixed and induced with the same quercetin concentration, resulting in two stable populations expressing different levels of their gene reporters. Besides, we demonstrated that the level of QdoR repression generated different noise levels in gene expression dependent on the concentration of quercetin. The circuits presented here can be exploited in applications requiring adjustment of gene expression and noise using a highly available and natural inducer as quercetin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA