Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 88(1): e0188221, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34705549

RESUMO

Natural transformation is the process by which bacteria actively take up and integrate extracellular DNA into their genomes. In cyanobacteria, natural transformation has only been experimentally demonstrated in a few species. Although cyanobacteria are important model systems for studying photosynthesis and circadian cycling, natural transformation in cyanobacteria has not been characterized to the degree that the process has been studied in other Gram-negative bacteria. Two cyanobacterial species that are 99.8% genetically identical provide a unique opportunity to better understand the nuances of natural transformation in cyanobacteria: Synechococcus elongatus PCC 7942 and Synechococcus elongatus UTEX 2973 (hereafter called Synechococcus 7942 and Synechococcus 2973, respectively). Synechococcus 7942 is a naturally transformable model system, while Synechococcus 2973 is a recently discovered species that is not naturally competent. Taking only 1.5 h to replicate, Synechococcus 2973 is the fastest-growing cyanobacterial species known and thus is a strong candidate for serving as a model organism. However, its inability to undergo natural transformation has prevented it from becoming a widely used model system. By substituting polymorphic alleles from Synechococcus 7942 for native Synechococcus 2973 alleles, natural transformation was introduced into Synechococcus 2973. Two genetic loci were found to be involved in differential natural competence between the two organisms: transformation pilus component pilN and circadian transcriptional master regulator rpaA. By using targeted genome editing and enrichment outgrowth, a strain that was both naturally transformable and fast-growing was created. This new Synechococcus 2973-T strain will serve as a valuable resource to the cyanobacterial research community. IMPORTANCE Certain bacterial species have the ability to take up naked extracellular DNA and integrate it into their genomes. This process is known as natural transformation and is widely considered to play a major role in bacterial evolution. Because of the ease of introducing new genes into naturally transformable organisms, this capacity is also highly valued in the laboratory. Cyanobacteria are photosynthetic and can therefore serve as model systems for some important aspects of plant physiology. Here, we describe the creation of a modified cyanobacterial strain (Synechococcus 2973-T) that is capable of undergoing natural transformation and has a replication time on par with that of the fastest-growing cyanobacterium discovered to date. This new cyanobacterium has the potential to serve as a new model organism for the cyanobacterial research community and will allow experiments to be completed in a fraction of the time it has taken to complete previous assays.


Assuntos
Synechococcus , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/metabolismo , Fotossíntese , Synechococcus/genética , Synechococcus/metabolismo
2.
Fungal Genet Biol ; 144: 103439, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32768603

RESUMO

In this research we report that the sepG1 mutation in Aspergillus nidulans resides in gene AN9463, which is predicted to encode an IQGAP orthologue. The genetic lesion is predicted to result in a G-to-R substitution at residue 1637 of the 1737-residue protein in a highly conserved region of the RasGAP-C-terminal (RGCT) domain. When grown at restrictive temperature, strains expressing the sepGG1637R (sepG1) allele are aseptate, with reduced colony growth and aberrantly formed conidiophores. The aseptate condition can be replicated by deletion of AN9463 or by downregulating its expression via introduced promoters. The mutation does not prevent assembly of a cortical contractile actomyosin ring (CAR) at putative septation sites, but tight compaction of the rings is impaired and the rings fail to constrict. Both GFP::SepG wild type and the GFP-tagged product of the sepG1 allele localize to the CAR at both permissive and restrictive temperatures. Downregulation of myoB (encoding the A. nidulans type-II myosin heavy chain) does not prevent formation of SepG rings at septation sites, but filamentous actin is required for CAR localization of SepG and MyoB. We identify fourteen probable IQ-motifs (EF-hand protein binding sites) in the predicted SepG sequence. Two of the A. nidulans EF-hand proteins, myosin essential light chain (AnCdc4) and myosin regulatory light chain (MrlC), colocalize with SepG and MyoB at all stages of CAR formation and constriction. However, calmodulin (CamA) appears at septation sites only after the CAR has become fully compacted. When expression of sepG is downregulated, leaving MyoB as the sole IQ-motif protein in the pre-compaction CAR, both MrlC and AnCdc4 continue to associate with the forming CAR. When myoB expression is downregulated, leaving SepG as the sole IQ-motif protein in the CAR, AnCdc4 association with the forming CAR continues but MrlC fails to associate. This supports a model in which the IQ motifs of MyoB bind both MrlC and AnCdc4, while the IQ motifs of SepG bind only AnCdc4. Downregulation of either mrlC or Ancdc4 results in an aseptate phenotype, but has no effect on association of either SepG or MyoB with the CAR.


Assuntos
Actomiosina/genética , Aspergillus nidulans/genética , Proteínas Contráteis/genética , Proteínas Ativadoras de ras GTPase/genética , Citoesqueleto de Actina/genética , Sítios de Ligação , Calmodulina/genética , Constrição , Citocinese/genética , Mutação/genética , Cadeias Leves de Miosina/genética , Miosina Tipo II/genética , Ligação Proteica/genética
3.
Front Microbiol ; 10: 1259, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231343

RESUMO

Natural transformation is the process by which bacteria actively take up and maintain extracellular DNA. This naturally occurring process is widely used as a genetic modification method in bacterial species, and is crucial for the efficient genetic modification of organisms in an industrial setting. Cyanobacteria are oxygenic photosynthetic microbes that are promising platforms for bioproduction of fuels, chemicals, and feedstocks. Using CO2 and sunlight alone, cyanobacteria can make these valuable bioproducts in a carbon-neutral manner. While genetic modifications have been performed in a number of cyanobacterial strains, natural transformation has been successfully demonstrated in only a handful of species. Even though thousands of cyanobacterial strains have been deposited in culture collections and hundreds of these species have had their genomes sequenced, only a few of these organisms have been experimentally transformed. Although there are many aspects of cyanobacterial biology that provide exciting opportunities for biological investigation, the absence of a rapid and straightforward genetic modification method such as natural transformation hinders research efforts to understand some of the fascinating nuances of cyanobacterial physiology. The ability to use natural transformation in more strains of cyanobacteria would facilitate the rapid employment of these organisms in bioproduction settings. This article discusses recent advances in the understanding of natural transformation in cyanobacteria. Additionally, it identifies gaps in the current knowledge about cyanobacterial natural transformation and provides an overview of how new genomic technologies may be implemented to understand this important process.

5.
Proc Natl Acad Sci U S A ; 115(50): E11761-E11770, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30409802

RESUMO

Cyanobacteria are emerging as attractive organisms for sustainable bioproduction. We previously described Synechococcus elongatus UTEX 2973 as the fastest growing cyanobacterium known. Synechococcus 2973 exhibits high light tolerance and an increased photosynthetic rate and produces biomass at three times the rate of its close relative, the model strain Synechococcus elongatus 7942. The two strains differ at 55 genetic loci, and some of these loci must contain the genetic determinants of rapid photoautotrophic growth and improved photosynthetic rate. Using CRISPR/Cpf1, we performed a comprehensive mutational analysis of Synechococcus 2973 and identified three specific genes, atpA, ppnK, and rpaA, with SNPs that confer rapid growth. The fast-growth-associated allele of each gene was then used to replace the wild-type alleles in Synechococcus 7942. Upon incorporation, each allele successively increased the growth rate of Synechococcus 7942; remarkably, inclusion of all three alleles drastically reduced the doubling time from 6.8 to 2.3 hours. Further analysis revealed that our engineering effort doubled the photosynthetic productivity of Synechococcus 7942. We also determined that the fast-growth-associated allele of atpA yielded an ATP synthase with higher specific activity, while that of ppnK encoded a NAD+ kinase with significantly improved kinetics. The rpaA SNPs cause broad changes in the transcriptional profile, as this gene is the master output regulator of the circadian clock. This pioneering study has revealed the molecular basis for rapid growth, demonstrating that limited genetic changes can dramatically improve the growth rate of a microbe by as much as threefold.


Assuntos
Synechococcus/crescimento & desenvolvimento , Synechococcus/genética , Complexos de ATP Sintetase/genética , Complexos de ATP Sintetase/metabolismo , Alelos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa , Cianobactérias/genética , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Genes Bacterianos , Engenharia Genética , Genômica , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fotossíntese/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Synechococcus/metabolismo , Transcriptoma
6.
Microb Cell Fact ; 15(1): 115, 2016 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-27339038

RESUMO

BACKGROUND: As autotrophic prokaryotes, cyanobacteria are ideal chassis organisms for sustainable production of various useful compounds. The newly characterized cyanobacterium Synechococcus elongatus UTEX 2973 is a promising candidate for serving as a microbial cell factory because of its unusually rapid growth rate. Here, we seek to develop a genetic toolkit that enables extensive genomic engineering of Synechococcus 2973 by implementing a CRISPR/Cas9 editing system. We targeted the nblA gene because of its important role in biological response to nitrogen deprivation conditions. RESULTS: First, we determined that the Streptococcus pyogenes Cas9 enzyme is toxic in cyanobacteria, and conjugational transfer of stable, replicating constructs containing the cas9 gene resulted in lethality. However, after switching to a vector that permitted transient expression of the cas9 gene, we achieved markerless editing in 100 % of cyanobacterial exconjugants after the first patch. Moreover, we could readily cure the organisms of antibiotic resistance, resulting in a markerless deletion strain. CONCLUSIONS: High expression levels of the Cas9 protein in Synechococcus 2973 appear to be toxic and result in cell death. However, introduction of a CRISPR/Cas9 genome editing system on a plasmid backbone that leads to transient cas9 expression allowed for efficient markerless genome editing in a wild type genetic background.


Assuntos
Técnicas Genéticas , Synechococcus/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/metabolismo , Mutagênese , Synechococcus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA