RESUMO
Biallelic pathogenic variants in UQCRFS1 underlie a rare form of isolated mitochondrial complex III deficiency associated with lactic acidosis and a distinctive scalp alopecia previously described in two unrelated probands. Here, we describe a participant in the Undiagnosed Diseases Network (UDN) with a dual diagnosis of two autosomal recessive disorders revealed by genome sequencing: UQCRFS1-related mitochondrial complex III deficiency and GJA8-related cataracts. Both pathogenic variants have been reported before: UQCRFS1 (NM_006003.3:c.215-1 G>C, p.Val72_Thr81del10) in a case with mitochondrial complex III deficiency and GJA8 (NM 005267.5:c.736 G>T, p.Glu246*) as a somatic change in aged cornea leading to decreased junctional coupling. A multi-modal approach combining enzyme assays and cellular proteomics analysis provided clear evidence of complex III respiratory chain dysfunction and low abundance of the Rieske iron-sulfur protein, validating the pathogenic effect of the UQCRFS1 variant. This report extends the genotypic and phenotypic spectrum for these two rare disorders and highlights the utility of deep phenotyping and genomics data to achieve diagnosis and insights into rare disease.
RESUMO
OBJECTIVES: To evaluate the real-world performance and reference intervals of the Binding Site Freelite serum free light chain (SFLC) assay (Thermo Fisher Scientific), a global standard for diagnosis, prognostication, and response assessment for monoclonal gammopathies. METHODS: An informatics-based approach was used to retrospectively evaluate concordance between SFLC and the orthogonal Sebia HYDRASYS immunofixation assay results in a large clinical data set consecutively reported between 2010 and 2020. RESULTS: Among patients with monoclonal-negative results by both SFLC and Sebia HYDRASYS immunofixation assays, 25% (1226/5057) had κ/λ ratios (KLRs) outside the manufacturer-defined and International Myeloma Working Group-cited normal reference interval of 0.26 to 1.65. These results were consistent over the study period and were not affected by sex, age, impaired kidney function, or assay antisera lot variation. Assay drift, in addition to other potential factors, affected the KLR distribution. Using International Statistical Classification of Diseases (ICD) codes, kidney function data, and the central 95% of KLR values generated on the Optilite platform (Thermo Fisher Scientific), we derived a new reference interval of 0.67 to 2.13, reducing the KLR false-positive rate to 8%. However, normal KLR persisted among 16% (14/85) of samples with free λ chains by immunofixation, warranting caution during interpretation. CONCLUSIONS: Our analysis indicated that revision of Freelite SFLC reference intervals improves assay interpretation and should prompt reconsideration of Freelite reference intervals worldwide.
Assuntos
Ciência de Dados , Gamopatia Monoclonal de Significância Indeterminada , Humanos , Estudos Retrospectivos , Cadeias Leves de ImunoglobulinaRESUMO
Objectives: Transcript sequencing of patient-derived samples has been shown to improve the diagnostic yield for solving cases of suspected Mendelian conditions, yet the added benefit of full-length long-read transcript sequencing is largely unexplored. Methods: We applied short-read and full-length transcript sequencing and mitochondrial functional studies to a patient-derived fibroblast cell line from an individual with neuropathy that previously lacked a molecular diagnosis. Results: We identified an intronic homozygous MFN2 c.600-31T>G variant that disrupts the branch point critical for intron 6 splicing. Full-length long-read isoform complementary DNA (cDNA) sequencing after treatment with a nonsense-mediated mRNA decay (NMD) inhibitor revealed that this variant creates 5 distinct altered splicing transcripts. All 5 altered splicing transcripts have disrupted open reading frames and are subject to NMD. Furthermore, a patient-derived fibroblast line demonstrated abnormal lipid droplet formation, consistent with MFN2 dysfunction. Although correctly spliced full-length MFN2 transcripts are still produced, this branch point variant results in deficient MFN2 levels and autosomal recessive Charcot-Marie-Tooth disease, axonal, type 2A (CMT2A). Discussion: This case highlights the utility of full-length isoform sequencing for characterizing the molecular mechanism of undiagnosed rare diseases and expands our understanding of the genetic basis for CMT2A.
RESUMO
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder that causes debilitating swelling and destruction of the joints. People with RA are treated with drugs that actively suppress one or more parts of their immune system, and these may alter the response to vaccination against SARS-CoV-2. In this study, we analyzed blood samples from a cohort of patients with RA after receiving a 2-dose mRNA COVID-19 vaccine regimen. Our data show that individuals on the cytotoxic T lymphocyte antigen 4-Ig therapy abatacept had reduced levels of SARS-CoV-2-neutralizing antibodies after vaccination. At the cellular level, these patients showed reduced activation and class switching of SARS-CoV-2-specific B cells, as well as reduced numbers and impaired helper cytokine production by SARS-CoV-2-specific CD4+ T cells. Individuals on methotrexate showed similar but less severe defects in vaccine response, whereas individuals on the B cell-depleting therapy rituximab had a near-total loss of antibody production after vaccination. These data define a specific cellular phenotype associated with impaired response to SARS-CoV-2 vaccination in patients with RA on different immune-modifying therapies and help inform efforts to improve vaccination strategies in this vulnerable population.
Assuntos
Artrite Reumatoide , COVID-19 , Humanos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Artrite Reumatoide/tratamento farmacológico , Anticorpos Antivirais , RNA MensageiroRESUMO
BACKGROUNDMeasuring the immune response to SARS-CoV-2 enables assessment of past infection and protective immunity. SARS-CoV-2 infection induces humoral and T cell responses, but these responses vary with disease severity and individual characteristics.METHODSA T cell receptor (TCR) immunosequencing assay was conducted using small-volume blood samples from 302 individuals recovered from COVID-19. Correlations between the magnitude of the T cell response and neutralizing antibody (nAb) titers or indicators of disease severity were evaluated. Sensitivity of T cell testing was assessed and compared with serologic testing.RESULTSSARS-CoV-2-specific T cell responses were significantly correlated with nAb titers and clinical indicators of disease severity, including hospitalization, fever, and difficulty breathing. Despite modest declines in depth and breadth of T cell responses during convalescence, high sensitivity was observed until at least 6 months after infection, with overall sensitivity ~5% greater than serology tests for identifying prior SARS-CoV-2 infection. Improved performance of T cell testing was most apparent in recovered, nonhospitalized individuals sampled > 150 days after initial illness, suggesting greater sensitivity than serology at later time points and in individuals with less severe disease. T cell testing identified SARS-CoV-2 infection in 68% (55 of 81) of samples with undetectable nAb titers (<1:40) and in 37% (13 of 35) of samples classified as negative by 3 antibody assays.CONCLUSIONThese results support TCR-based testing as a scalable, reliable measure of past SARS-CoV-2 infection with clinical value beyond serology.TRIAL REGISTRATIONSpecimens were accrued under trial NCT04338360 accessible at clinicaltrials.gov.FUNDINGThis work was funded by Adaptive Biotechnologies, Frederick National Laboratory for Cancer Research, NIAID, Fred Hutchinson Joel Meyers Endowment, Fast Grants, and American Society for Transplantation and Cell Therapy.
Assuntos
COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Receptores de Antígenos de Linfócitos T/genética , SARS-CoV-2 , Índice de Gravidade de Doença , Estados UnidosRESUMO
We designed a protein biosensor that uses thermodynamic coupling for sensitive and rapid detection of neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in serum. The biosensor is a switchable, caged luciferase-receptor-binding domain (RBD) construct that detects serum-antibody interference with the binding of virus RBD to angiotensin-converting enzyme 2 (ACE-2) as a proxy for neutralization. Our coupling approach does not require target modification and can better distinguish sample-to-sample differences in analyte binding affinity and abundance than traditional competition-based assays.
Assuntos
Técnicas Biossensoriais , COVID-19 , Anticorpos Neutralizantes/química , Anticorpos Antivirais/genética , COVID-19/diagnóstico , Humanos , Testes de Neutralização , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/químicaRESUMO
Multiple sclerosis (MS) is a demyelinating inflammatory disease of the CNS treated by diverse disease-modifying therapies that suppress the immune system. Severe acute respiratory syndrome coronavirus 2 mRNA vaccines have been very effective in immunocompetent individuals, but whether MS patients treated with modifying therapies are afforded the same protection is not known. This study determined that dimethyl fumarate caused a momentary reduction in anti-Spike (S)-specific Abs and CD8 T cell response. MS patients treated with B cell-depleting (anti-CD20) or sphingosine 1-phosphate receptor agonist (fingolimod) therapies lack significant S-specific Ab response. Whereas S-specific CD4 and CD8 T cell responses were largely compromised by fingolimod treatment, T cell responses were robustly generated in anti-CD20-treated MS patients, but with a reduced proportion of CD4+CXCR5+ circulating follicular Th cells. These data provide novel information regarding vaccine immune response in patients with autoimmunity useful to help improve vaccine effectiveness in these populations.
Assuntos
COVID-19 , Esclerose Múltipla , Vacinas contra COVID-19 , Humanos , Memória Imunológica , Esclerose Múltipla/tratamento farmacológico , SARS-CoV-2RESUMO
While detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by diagnostic reverse-transcription polymerase chain reaction (RT-PCR) is highly sensitive for viral RNA, the nucleic acid amplification of subgenomic RNAs (sgRNAs) that are the product of viral replication may more accurately identify replication. We characterized the diagnostic RNA and sgRNA detection by RT-PCR from nasal swab samples collected daily by participants in postexposure prophylaxis or treatment studies for SARS-CoV-2. Among 1932 RT-PCR-positive swab samples with sgRNA tests, 40% (767) had detectable sgRNA. Above a diagnostic RNA viral load (VL) threshold of 5.1 log10 copies/mL, 96% of samples had detectable sgRNA with VLs that followed a linear trend. The trajectories of diagnostic RNA and sgRNA VLs differed, with 80% peaking on the same day but duration of sgRNA detection being shorter (8 vs 14 days). With a large sample of daily swab samples we provide comparative sgRNA kinetics and a diagnostic RNA threshold that correlates with replicating virus independent of symptoms or duration of illness.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Cinética , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Carga ViralRESUMO
Coronavirus disease 2019 symptom definitions rarely include symptom severity. We collected daily nasal swab samples and symptom diaries from contacts of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) case patients. Requiring ≥1 moderate or severe symptom reduced sensitivity to predict SARS-CoV-2 shedding from 60.0% (95% confidence interval [CI], 52.9%-66.7%) to 31.5% (95% CI, 25.7%-â 38.0%) but increased specificity from 77.5% (95% CI, 75.3%-79.5%) to 93.8% (95% CI, 92.7%-94.8%).
Assuntos
COVID-19 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Estudos Longitudinais , SARS-CoV-2RESUMO
BACKGROUND: The 2019 classification criteria for systemic lupus erythematosus (SLE) includes an initial criterion requiring the presence of an antinuclear antibody (ANA), positive at a titer of at least 1:80 on HEp-2 cells, or equivalent. However, results of ANA tests performed on HEp-2 cells vary when tested in different laboratories. Calibration of ANA assays by achieving a common specificity in healthy control populations offers the possibility of achieving harmonization via population interrogation, but the expected specificity in a healthy control population is not known. METHODS: The studies used to determine the use of ANAs performed by immunofluorescence microscopy on HEp-2 cells as the entry criterion for classification of SLE were reanalyzed by a meta-analysis to determine the expected frequency of positive ANAs in healthy control populations at serum dilutions of 1:40 and 1:80. RESULTS: Our meta-analysis demonstrated that the expected specificity in a healthy control population of ANA performed using serum diluted 1:80 is 91.3% (CI 86.1-94.7%). The expected specificity of ANA performed at 1:40 serum dilution is 79.2% (CI 72.3-84.8%). CONCLUSION: One approach to achieving harmonization of ANA assays from different laboratories with each other and with expected performance would involve adjusting assays so that about 10% of a healthy control population has a positive ANA when tested at 1:80 dilution, and about 20% of the healthy control population has a positive ANA when tested at 1:40 dilution. This pragmatic approach to calibration and harmonization adjustment via population interrogation offers an opportunity for individual laboratories to be aligned with each other and with ANA performance expected for consistent categorization of patients with SLE.
Assuntos
Anticorpos Antinucleares , Lúpus Eritematoso Sistêmico , Calibragem , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico , Microscopia de FluorescênciaRESUMO
BACKGROUND: Efforts to minimize COVID-19 exposure during the current SARS-CoV-2 pandemic have led to limitations in access to medical care and testing. The Tasso-SST kit includes all of the components necessary for remote, capillary blood self-collection. In this study, we sought to investigate the accuracy and reliability of the Tasso-SST device as a self-collection device for measurement of SARS-CoV-2 IgG antibodies. METHODS: Capillary blood was obtained via unsupervised and supervised application of the Tasso-SST device, and venous blood was collected by standard venipuncture. Unsupervised self-collected blood samples underwent either extreme summer or winter-simulated shipping conditions prior to testing. Sera obtained by all three methods were tested concurrently using the EuroImmun anti-SARS-CoV-2 S1 IgG assay in a CLIA-certified clinical laboratory. RESULTS: Successful Tasso-SST capillary blood collection by unsupervised and supervised administration was completed by 93.4% and 94.5% of participants, respectively. Sera from 56 participants, 55 with documented (PCR+) COVID-19, and 33 healthy controls were then tested for anti-SARS-CoV-2 IgG antibodies. Compared to venous blood results, Tasso-SST-collected (unstressed) and the summer- and winter-stressed blood samples demonstrated Deming regression slopes of 1.00 (95% CI: 0.99-1.02), 1.00 (95% CI: 0.98-1.01), and 0.99 (95% CI: 0.97-1.01), respectively, with an overall accuracy of 98.9%. CONCLUSIONS: Capillary blood self-collection using the Tasso-SST device had a high success rate. Moreover, excellent concordance was found for anti-SARS-CoV-2 IgG results between Tasso-SST capillary and standard venous blood-derived sera. The Tasso-SST device should enable widespread collection of capillary blood for testing without medical supervision, facilitating epidemiologic studies.
Assuntos
Anticorpos Antivirais/imunologia , Coleta de Amostras Sanguíneas/métodos , Teste para COVID-19/métodos , COVID-19/diagnóstico , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Coleta de Amostras Sanguíneas/instrumentação , COVID-19/epidemiologia , COVID-19/virologia , Teste para COVID-19/instrumentação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Reprodutibilidade dos Testes , SARS-CoV-2/fisiologia , Sensibilidade e Especificidade , Adulto JovemAssuntos
Anticorpos Antinucleares/sangue , Técnica Indireta de Fluorescência para Anticorpo/normas , Lúpus Eritematoso Sistêmico/diagnóstico , Indicadores de Qualidade em Assistência à Saúde/normas , Kit de Reagentes para Diagnóstico/normas , Escleroderma Sistêmico/diagnóstico , Biomarcadores/sangue , Calibragem , Humanos , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/imunologia , Variações Dependentes do Observador , Valor Preditivo dos Testes , Controle de Qualidade , Padrões de Referência , Reprodutibilidade dos Testes , Escleroderma Sistêmico/sangue , Escleroderma Sistêmico/imunologiaRESUMO
With global vaccination efforts against SARS-CoV-2 underway, there is a need for rapid quantification methods for neutralizing antibodies elicited by vaccination and characterization of their strain dependence. Here, we describe a designed protein biosensor that enables sensitive and rapid detection of neutralizing antibodies against wild type and variant SARS-CoV-2 in serum samples. More generally, our thermodynamic coupling approach can better distinguish sample to sample differences in analyte binding affinity and abundance than traditional competition based assays.
RESUMO
Measuring the adaptive immune response to SARS-CoV-2 can enable the assessment of past infection as well as protective immunity and the risk of reinfection. While neutralizing antibody (nAb) titers are one measure of protection, such assays are challenging to perform at a large scale and the longevity of the SARS-CoV-2 nAb response is not fully understood. Here, we apply a T-cell receptor (TCR) sequencing assay that can be performed on a small volume standard blood sample to assess the adaptive T-cell response to SARS-CoV-2 infection. Samples were collected from a cohort of 302 individuals recovered from COVID-19 up to 6 months after infection. Previously published findings in this cohort showed that two commercially available SARS-CoV-2 serologic assays correlate well with nAb testing. We demonstrate that the magnitude of the SARS-CoV-2-specific T-cell response strongly correlates with nAb titer, as well as clinical indicators of disease severity including hospitalization, fever, or difficulty breathing. While the depth and breadth of the T-cell response declines during convalescence, the T-cell signal remains well above background with high sensitivity up to at least 6 months following initial infection. Compared to serology tests detecting binding antibodies to SARS-CoV-2 spike and nucleoprotein, the overall sensitivity of the TCR-based assay across the entire cohort and all timepoints was approximately 5% greater for identifying prior SARS-CoV-2 infection. Notably, the improved performance of T-cell testing compared to serology was most apparent in recovered individuals who were not hospitalized and were sampled beyond 150 days of their initial illness, suggesting that antibody testing may have reduced sensitivity in individuals who experienced less severe COVID-19 illness and at later timepoints. Finally, T-cell testing was able to identify SARS-CoV-2 infection in 68% (55/81) of convalescent samples having nAb titers below the lower limit of detection, as well as 37% (13/35) of samples testing negative by all three antibody assays. These results demonstrate the utility of a TCR-based assay as a scalable, reliable measure of past SARS-CoV-2 infection across a spectrum of disease severity. Additionally, the TCR repertoire may be useful as a surrogate for protective immunity with additive clinical value beyond serologic or nAb testing methods.
RESUMO
BACKGROUND: Treatment options for outpatients with COVID-19 could reduce morbidity and prevent SARS-CoV-2 transmission. METHODS: In this randomized, double-blind, three-arm (1:1:1) placebo-equivalent controlled trial conducted remotely throughout the United States, adult outpatients with laboratory-confirmed SARS-CoV-2 infection were recruited. Participants were randomly assigned to receive hydroxychloroquine (HCQ) (400 mg BID x1day, followed by 200 mg BID x9days) with or without azithromycin (AZ) (500 mg, then 250 mg daily x4days) or placebo-equivalent (ascorbic acid (HCQ) and folic acid (AZ)), stratified by risk for progression to severe COVID-19 (high-risk vs. low-risk). Self-collected nasal swabs for SARS-CoV-2 PCR, FLUPro symptom surveys, EKGs and vital signs were collected daily. Primary endpoints were: (a) 14-day progression to lower respiratory tract infection (LRTI), 28-day COVID-19 related hospitalization, or death; (b) 14-day time to viral clearance; secondary endpoints included time to symptom resolution (ClinicalTrials.gov: NCT04354428). Due to the low rate of clinical outcomes, the study was terminated for operational futility. FINDINGS: Between 15th April and 27th July 2020, 231 participants were enrolled and 219 initiated medication a median of 5.9 days after symptom onset. Among 129 high-risk participants, incident LRTI occurred in six (4.7%) participants (two control, four HCQ/AZ) and COVID-19 related hospitalization in seven (5.4%) (four control, one HCQ, two HCQ/AZ); no LRTI and two (2%) hospitalizations occurred in the 102 low-risk participants (one HCQ, one HCQ/AZ). There were no deaths. Among 152 participants with viral shedding at enrollment, median time to clearance was 5 days (95% CI=4-6) in HCQ, 6 days (95% CI=4-8) in HCQ/AZ, and 8 days (95% CI=6-10) in control. Viral clearance was faster in HCQ (HR=1.62, 95% CI=1.01-2.60, p = 0.047) but not HCQ/AZ (HR=1.25, p = 0.39) compared to control. Among 197 participants who met the COVID-19 definition at enrollment, time to symptom resolution did not differ by group (HCQ: HR=1.02, 95% CI-0.63-1.64, p = 0.95, HCQ/AZ: HR=0.91, 95% CI=0.57-1.45, p = 0.70). INTERPRETATION: Neither HCQ nor HCQ/AZ shortened the clinical course of outpatients with COVID-19, and HCQ, but not HCQ/AZ, had only a modest effect on SARS-CoV-2 viral shedding. HCQ and HCQ/AZ are not effective therapies for outpatient treatment of SARV-CoV-2 infection. FUNDING: The COVID-19 Early Treatment Study was funded by the Bill & Melinda Gates Foundation (INV-017062) through the COVID-19 Therapeutics Accelerator. University of Washington Institute of Translational Health Science (ITHS) grant support (UL1 TR002319), KL2 TR002317, and TL1 TR002318 from NCATS/NIH funded REDCap. The content is solely the responsibility of the authors and does not necessarily represent the views, decisions, or policies of the institutions with which they are affiliated. PAN and MJA were supported by the Mayo Clinic Windland Smith Rice Comprehensive Sudden Cardiac Death Program.Trial registration ClinicalTrials.gov number NCT04354428.
RESUMO
BACKGROUND: To evaluate the interpretation and reporting of antinuclear antibodies (ANA) by indirect immunofluorescence assay (IFA) using HEp-2 substrates based on common practice and guidance by the International Consensus on ANA patterns (ICAP). METHOD: Participants included two groups [16 clinical laboratories (CL) and 8 in vitro diagnostic manufacturers (IVD)] recruited via an email sent to the Association of Medical Laboratory Immunologists (AMLI) membership. Twelve (n = 12) pre-qualified specimens were distributed to participants for testing, interpretation and reporting HEp-2 IFA. Results obtained were analyzed for accuracy with the intended and consensus response for three main categorical patterns (nuclear, cytoplasmic and mitotic), common patterns and ICAP report nomenclatures. The distributions of antibody titers of specimens were also compared. RESULTS: Laboratories differed in the categorical patterns reported; 8 reporting all patterns, 3 reporting only nuclear patterns and 5 reporting nuclear patterns with various combinations of other patterns. For all participants, accuracy with the intended response for the categorical nuclear pattern was excellent at 99% [95% confidence interval (CI): 97-100%] compared to 78% [95% CI 67-88%] for the cytoplasmic, and 93% [95% CI 86%-100%] for mitotic patterns. The accuracy was 13% greater for the common nomenclature [87%, 95% CI 82-90%] compared to the ICAP nomenclature [74%, 95% CI 68-79%] for all participants. Participants reporting all three main categories demonstrated better performances compared to those reporting 2 or less categorical patterns. The average accuracies varied between participant groups, however, with the lowest and most variable performances for cytoplasmic pattern specimens. The reported titers for all specimens varied, with the least variability for nuclear patterns and most titer variability associated with cytoplasmic patterns. CONCLUSIONS: Our study demonstrated significant accuracy for all participants in identifying the categorical nuclear staining as well as traditional pattern assignments for nuclear patterns. However, there was less consistency in reporting cytoplasmic and mitotic patterns, with implications for assigning competencies and training for clinical laboratory personnel.
RESUMO
BACKGROUNDSARS-CoV-2-specific antibodies may protect from reinfection and disease, providing rationale for administration of plasma containing SARS-CoV-2-neutralizing antibodies (nAbs) as a treatment for COVID-19. Clinical factors and laboratory assays to streamline plasma donor selection, and the durability of nAb responses, are incompletely understood.METHODSPotential convalescent plasma donors with virologically documented SARS-CoV-2 infection were tested for serum IgG against SARS-CoV-2 spike protein S1 domain and against nucleoprotein (NP), and for nAb.RESULTSAmong 250 consecutive persons, including 27 (11%) requiring hospitalization, who were studied a median of 67 days since symptom onset, 97% were seropositive on 1 or more assays. Sixty percent of donors had nAb titers ≥1:80. Correlates of higher nAb titers included older age (adjusted OR [AOR] 1.03 per year of age, 95% CI 1.00-1.06), male sex (AOR 2.08, 95% CI 1.13-3.82), fever during illness (AOR 2.73, 95% CI 1.25-5.97), and disease severity represented by hospitalization (AOR 6.59, 95% CI 1.32-32.96). Receiver operating characteristic analyses of anti-S1 and anti-NP antibody results yielded cutoffs that corresponded well with nAb titers, with the anti-S1 assay being slightly more predictive. nAb titers declined in 37 of 41 paired specimens collected a median of 98 days (range 77-120) apart (P < 0.001). Seven individuals (2.8%) were persistently seronegative and lacked T cell responses.CONCLUSIONnAb titers correlated with COVID-19 severity, age, and sex. SARS-CoV-2 IgG results can serve as useful surrogates for nAb testing. Functional nAb levels declined, and a small proportion of convalescent individuals lacked adaptive immune responses.FUNDINGThe project was supported by the Frederick National Laboratory for Cancer Research with support from the NIAID under contract number 75N91019D00024, and was supported by the Fred Hutchinson Joel Meyers Endowment, Fast-Grants, a New Investigator award from the American Society for Transplantation and Cellular Therapy, and NIH contracts 75N93019C0063, 75N91019D00024, and HHSN272201800013C, and NIH grants T32-AI118690, T32-AI007044, K08-AI119142, and K23-AI140918.