Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(48): e2303949, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37530198

RESUMO

To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy storage systems (AZIESSs), characterizing safety and low cost, are competitive candidates for flexible energy storage. Hydrogels, as quasi-solid substances, are the appropriate and burgeoning electrolytes that enable high-performance flexible AZIESSs. However, challenges still remain in designing suitable and comprehensive hydrogel electrolyte, which provides flexible AZIESSs with high reversibility and versatility. Hence, the application of hydrogel electrolyte-based AZIESSs in wearable electronics is restricted. A thorough review is required for hydrogel electrolyte design to pave the way for high-performance flexible AZIESSs. This review delves into the engineering of desirable hydrogel electrolytes for flexible AZIESSs from the perspective of electrolyte designers. Detailed descriptions of hydrogel electrolytes in basic characteristics, Zn anode, and cathode stabilization effects as well as their functional properties are provided. Moreover, the application of hydrogel electrolyte-based flexible AZIESSs in wearable electronics is discussed, expecting to accelerate their strides toward lives. Finally, the corresponding challenges and future development trends are also presented, with the hope of inspiring readers.

2.
Angew Chem Int Ed Engl ; 62(10): e202218454, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36624050

RESUMO

Despite conspicuous merits of Zn metal anodes, the commercialization is still handicapped by rampant dendrite formation and notorious side reaction. Manipulating the nucleation mode and deposition orientation of Zn is a key to rendering stabilized Zn anodes. Here, a dual electrolyte additive strategy is put forward via the direct cooperation of xylitol (XY) and graphene oxide (GO) species into typical zinc sulfate electrolyte. As verified by molecular dynamics simulations, the incorporated XY molecules could regulate the solvation structure of Zn2+ , thus inhibiting hydrogen evolution and side reactions. The self-assembled GO layer is in favor of facilitating the desolvation process to accelerate reaction kinetics. Progressive nucleation and orientational deposition can be realized under the synergistic modulation, enabling a dense and uniform Zn deposition. Consequently, symmetric cell based on dual additives harvests a highly reversible cycling of 5600 h at 1.0 mA cm-2 /1.0 mAh cm-2 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA