Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Environ Toxicol ; 39(6): 3710-3720, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38511855

RESUMO

Tryptanthrin, an alkaloid applied in traditional Chinese medicine, exhibits a variety of pharmacological activities. This study aimed to investigate the anti-tumor activity of the tryptanthrin derivative (8-cyanoindolo[2,1-b]quinazoline-6,12-dione [CIQ]) in breast cancer cells. In both MDA-MB-231 and MCF-7 breast cancer cells, CIQ inhibited cell viability and promoted caspase-dependent apoptosis. At the concentration- and time-dependent ways, CIQ increased the levels of p-ERK, p-JNK, and p-p38 in breast cancer cells. We found that exposure to the JNK inhibitor or the ERK inhibitor partially reversed CIQ's viability. We also observed that CIQ increased reactive oxygen species (ROS) generation, and upregulated the phosphorylation and expression of H2AX. However, the pretreatment of the antioxidants did not protect the cells against CIQ's effects on cell viability and apoptosis, which suggested that ROS does not play a major role in the mechanism of action of CIQ. In addition, CIQ inhibited the invasion of MDA-MB-231 cells and decreased the expression of the prometastatic factors (MMP-2 and Snail). These findings demonstrated that the possibility of this compound to show promise in playing an important role against breast cancer.


Assuntos
Antineoplásicos , Apoptose , Neoplasias da Mama , Sobrevivência Celular , Quinazolinas , Feminino , Humanos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Quinazolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
2.
Anal Bioanal Chem ; 416(4): 945-957, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38051414

RESUMO

Histamine causes allergic reactions and can serve as an indicator for assessing food quality. This study designed and developed a dispersive micro solid-phase extraction (D-µSPE) method that combined the advantages of dispersive liquid-liquid extraction and solid-phase extraction (SPE). Molecularly imprinted polymers (MIPs) were employed as the solid phase in the D-µSPE method to extract histamine in wine samples. We used microwave energy to significantly reduce the synthesis time, achieving an 11.1-fold shorter synthesis time compared to the conventional MIP synthetic method. Under optimized D-µSPE conditions, our results showed that the dispersive solvent could effectively increase the adsorption performance of MIPs in wine samples by 97.7%. To improve the sensitivity of histamine detection in gas chromatography-mass spectrometry, we employed the microwave-assisted tandem derivatization method to reuse excess derivatization reagents and reduce energy consumption and reaction time. Calibration curves were constructed for wine samples spiked with 0-400 nmol histamine using the standard addition method, resulting in good linearity with a coefficient of determination of 0.999. The intra- and inter-batch relative standard deviations of the slope and intercept were < 0.7% and < 5.3%, respectively. The limits of quantitation and detection were 0.4 nmol and 0.1 nmol, respectively. The developed method was successfully applied to analyze the histamine concentration in 10 commercial wine samples. In addition, the AGREEprep tool was used to evaluate the greenness performance of the developed method, which obtained a higher score than the other reported methods.


Assuntos
Impressão Molecular , Vinho , Vinho/análise , Cromatografia Líquida de Alta Pressão/métodos , Histamina/análise , Polímeros/química , Extração em Fase Sólida/métodos , Impressão Molecular/métodos
3.
Chem Biol Interact ; 380: 110538, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37164279

RESUMO

The enzyme pyruvate kinase M2 (PKM2) is involved in glycolysis, which plays an important role in the regulation of tumor progression. In this study, we investigated the anti-tumor activity of N-(4-(3-(3-(methylamino)-3-oxopropyl)-5-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)-1H-pyrazol-1-yl)phenyl)propiolamide (MTP), a PKM2 inhibitor, in oral squamous cell carcinoma (OSCC) cells. Our results showed that MTP inhibited cell growth with IC50 values of 0.59 µM and 0.78 µM in SCC2095 and HSC-3 OSCC cells, respectively. MTP induced caspase-dependent apoptosis, which was associated with the modulation of PKM2 and oncogenic biomarkers epidermal growth factor receptor and ß-catenin. In addition, MTP increased the generation of reactive oxygen species (ROS) and modulated the expression of autophagic gene products, including LC3B-II and p62. Western blotting showed that MTP inhibited Janus kinase 2 (JAK2) signaling, and JAK2 overexpression partially reversed MTP-mediated cytotoxicity. Taken together, these data indicate the potential use of MTP as a therapeutic agent for OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Janus Quinase 2/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Linhagem Celular Tumoral , Apoptose , Autofagia , Proliferação de Células
4.
Environ Toxicol ; 38(3): 666-675, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36436203

RESUMO

According to the alarming statistical analysis of global cancer, there are over 19 million new diagnoses and more than 10 million deaths each year. One such cancer is the oral squamous cell carcinoma (OSCC), which requires new therapeutic strategies. Ficus septica extract has been used in traditional medicine to treat infectious diseases. In this study, we examined the anti-proliferative effects of an extract of F. septica bark (FSB) in OSCC cells. Our results showed that FSB caused a concentration-dependent reduction in the viability of SCC2095 OSCC cells, as determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, and was less sensitive to fibroblasts. In addition, FSB induced apoptosis by activating caspases, accompanied by the modulation of Akt/mTOR/NF-κB and mitogen-activated protein kinase signaling. Moreover, FSB increased reactive oxygen species generation in a concentration-dependent manner in SCC2095 cells. Furthermore, FSB inhibited cell migration and modulated the levels of the cell adhesion molecules including E-cadherin, N-cadherin, and Snail in SCC2095 cells. Pinoresinol, a lignan isolated from FSB, showed antitumor effects in SCC2095 cells, implying that this compound might play an important role in FSB-induced OSCC cell death. Taken together, FSB is a potential anti-tumor agent against OSCC cells.


Assuntos
Carcinoma de Células Escamosas , Ficus , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/patologia , Linhagem Celular Tumoral , Apoptose , Proliferação de Células
5.
Cancers (Basel) ; 14(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36230821

RESUMO

Triple negative breast cancer (TNBC) is considered the most aggressive breast cancer with high relapse rates and poor prognosis. Although great advances in the development of cancer therapy have been witnessed over the past decade, the treatment options for TNBC remain limited. In this study, we investigated the effect and potential underlying mechanism of the Hsp70 inhibitors, compound 1 and compound 6, on breast cancer stem cells (BCSCs) in TNBC cells. Our results showed that compound 1 and 6 exhibited potent tumor suppressive effects on cell viability and proliferation, and effectively inhibited BCSC expansion in TNBC cells. Reminiscent with the effect of Hsp70 inhibitors, Hsp70 knockdown effectively suppressed mammosphere formation and the expressions of BCSCs surface markers. Mechanistically, evidence showed that the Hsp70 inhibitors inhibited BCSCs by down-regulating ß-catenin in TNBC cells. Moreover, we used the Hsp70 inhibitors treated TNBC cells and a stable Hsp70 knockdown clone of MDA-MB-231 cells to demonstrate the in vivo efficacy of Hsp70 inhibition in suppressing tumorigenesis and xenograft tumor growth. Together, these findings suggest the potential role of Hsp70 as a target for TNBC therapy and foster new therapeutic strategies to eliminate BCSCs by targeting Hsp70.

6.
Environ Toxicol ; 37(11): 2728-2742, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36214339

RESUMO

Fructose overconsumption promotes tumor progression. Neuroblastoma is a common extracranial tumor with about 50% 5-year survival rate in high-risk children. The anti-tumor effect of Tribulus terrestris might bring new hope to neuroblastoma therapy. However, whether fructose disturbs the therapeutic effect of T. terrestris is currently unknown. In this study, the mouse neuroblastoma cell line, Neuro 2a (N2a) cells, was used to investigate the therapeutic effects of T. terrestris extract at various dosages (0.01, 1, 100 ng/ml) in regular EMEM medium or extra added fructose (20 mM) for 24 h. 100 ng/ml T. terrestris treatment significantly reduced the cell viability, whereas the cell viabilities were enhanced at the dosages of 0.01 or 1 ng/ml T. terrestris in the fructose milieu instead. The inhibition effect of T. terrestris on N2a migration was blunted in the fructose milieu. Moreover, T. terrestris effectively suppressed mitochondrial functions, including oxygen consumption rates, the activities of electron transport enzymes, the expressions of mitochondrial respiratory enzymes, and mitochondrial membrane potential. These suppressions were reversed in the fructose group. In addition, the T. terrestris-suppressed mitofusin and the T. terrestris-enhance mitochondrial fission 1 protein were maintained at basal levels in the fructose milieu. Together, these results demonstrated that T. terrestris extract effectively suppressed the survival and migration of neuroblastoma via inhibiting mitochondrial oxidative phosphorylation and disturbing mitochondrial dynamics. Whereas, the fructose milieu blunted the therapeutic effect of T. terrestris, particularly, when the dosage is reduced.


Assuntos
Frutose , Neuroblastoma , Animais , Linhagem Celular , Frutose/farmacologia , Camundongos , Mitocôndrias , Neuroblastoma/tratamento farmacológico , Extratos Vegetais/farmacologia , Tribulus
7.
Anal Methods ; 14(37): 3694-3701, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36102878

RESUMO

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a rapid and low-solvent-consumption technique. However, almost every mass in the low mass-to-charge-ratio region of the mass spectrum appears as strongly fluctuating matrix background signals. Thus, it is difficult to identify small molecules using this technique. In this study, we used methanol to methylate valsartan, an angiotensin II receptor blocker that is commonly used to treat high blood pressure and heart failure. The methylation derivatization of valsartan enhanced the detection sensitivity and transformed the detection m/z ratio. The liquid-phase microextraction of valsartan in human plasma (20 µL) was achieved by acidifying valsartan with HCl aqueous solution and extracting it with toluene. An acetyl chloride/anhydrous methanol mixture was added for methylation derivatization, which was completed within 30 min at 30 °C. Finally, the residue was re-dissolved in irbesartan methanolic solution, which together with the matrix 2-mercaptobenzothiazole was spotted on an AnchorChip target plate for MALDI-TOF MS analysis. Liquid-phase microextraction was performed and the methylation-derivatization parameters were investigated. The valsartan calibration range was 0.2-10 µg mL-1 with good linearity in human plasma. In the within- and between-run analyses, the relative standard deviation and relative error were both <11.32%. This method was successfully applied to determine the valsartan concentration in the plasma of 10 patients with hypertension.


Assuntos
Metanol , Tolueno , Antagonistas de Receptores de Angiotensina , Humanos , Indicadores e Reagentes , Irbesartana , Metilação , Solventes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Valsartana
8.
Environ Toxicol ; 37(6): 1404-1412, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35212453

RESUMO

Oral squamous cell carcinoma (OSCC) represents a clinical challenge due to the lack of effective therapy to improve prognosis. Hippo/Yes-associated protein (YAP) signaling has emerged as a promising therapeutic target for squamous cell carcinoma treatment. In this study, we investigated the antitumor activity and underlying mechanisms of {[N-(4-(5-(3-(3-(4-acetamido-3-(trifluoromethyl)phenyl)ureido)phenyl)-1,2,4-oxadiazol-3-yl)-3-chlorophenyl)-nicotinamide]} (ATN), a novel YAP inhibitor, in OSCC cells. ATN exhibited differential antiproliferative efficacy against OSCC cells (IC50 as low as 0.29 µM) versus nontumorigenic human fibroblast cells (IC50  = 1.9 µM). Moreover, ATN effectively suppressed the expression of YAP and YAP-related or downstream targets, including Akt, p-AMPK, c-Myc, and cyclin D1, which paralleled the antiproliferative efficacy of ATN. Supporting the roles of YAP in regulating cancer cell survival and migration, ATN not only induced caspase-dependent apoptosis, but also suppressed migration activity in OSCC. Mechanistically, the antitumor activity of ATN in OSCC was attributed, in part, to its ability to regulate Mcl-1 expression. Together, these findings suggest a translational potential of YAP inhibitors, represented by ATN as anticancer therapy for OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Apoptose , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteínas de Sinalização YAP
9.
Molecules ; 27(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35209129

RESUMO

Excess synaptic glutamate release has pathological consequences, and the inhibition of glutamate release is crucial for neuroprotection. Kaempferol 3-rhamnoside (KR) is a flavonoid isolated from Schima superba with neuroprotective properties, and its effecton the release of glutamate from rat cerebrocortical nerve terminals was investigated. KR produced a concentration-dependent inhibition of 4-aminopyridine (4-AP)-evoked glutamate release with half-maximal inhibitory concentration value of 17 µM. The inhibition of glutamate release by KR was completely abolished by the omission of external Ca2+ or the depletion of glutamate in synaptic vesicles, and it was unaffected by blocking carrier-mediated release. In addition, KR reduced the 4-AP-evoked increase in Ca2+ concentration, while it did not affect 4-AP-evoked membrane potential depolarization. The application of selective antagonists of voltage-dependent Ca2+ channels revealed that the KR-mediated inhibition of glutamate release involved the suppression of P/Q-type Ca2+ channel activity. Furthermore, the inhibition of release was abolished by the calmodulin antagonist, W7, and Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor, KN62, but not by the protein kinase A (PKA) inhibitor, H89, or the protein kinase C (PKC) inhibitor, GF109203X. We also found that KR reduced the 4-AP-induced increase in phosphorylation of CaMKII and its substrate synapsin I. Thus, the effect of KR on evoked glutamate release is likely linked to a decrease in P/Q-type Ca2+ channel activity, as well as to the consequent reduction in the CaMKII/synapsin I pathway.


Assuntos
Canais de Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Quempferóis/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Córtex Cerebral/citologia , Relação Dose-Resposta a Droga , Quempferóis/química , Potenciais da Membrana/efeitos dos fármacos , Estrutura Molecular , Fosforilação , Ratos , Transdução de Sinais/efeitos dos fármacos , Sinapsinas/metabolismo
10.
Biomedicines ; 9(11)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34829756

RESUMO

Trytanthrin, found in Ban-Lan-Gen, is a natural product containing an indoloquinazoline moiety and has been shown to possess anti-inflammatory and anti-viral activities. Chronic inflammation and hepatitis B are known to be associated with the progression of hepatocellular carcinoma (HCC). In this study, a series of tryptanthrin derivatives were synthesized to generate potent anti-tumor agents against HCC. This effort yielded two compounds, A1 and A6, that exhibited multi-fold higher cytotoxicity in HCC cells than the parent compound. Flow cytometric analysis demonstrated that A1 and A6 caused S-phase arrest and downregulated the expression of cyclin A1, B1, CDK2, and p-CDC2. In addition to inducing caspase-dependent apoptosis, A1 and A6 exhibited similar regulation of the phosphorylation or expression of multiple signaling targets, including Akt, NF-κB, and mitogen-activated protein kinases. The anti-tumor activities of A1 and A6 were also attributable to the generation of reactive oxygen species, accompanied by an increase in p-p53 levels. Therefore, A1 and A6 have potential clinical applications since they target diverse aspects of cancer cell growth in HCC.

11.
J Chromatogr A ; 1659: 462629, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34700182

RESUMO

Biogenic amines are quality control criteria for foods that are potentially toxic to humans. In this study, amidation derivatization for biogenic amines and liquid-solid phase transition microextraction were carried out simultaneously for food sample pretreatment. The derivatization reaction was executed in one pot with coumarin-3-carboxylic acid as the derivatizing reagent and (1-cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylamino-morpholino-carbenium hexafluorophosphate as the coupling agent. Liquid-solid phase transition microextraction was achieved by the salting-out effect, using a phase change salt (1 M disodium hydrogen phosphate) solution. The combined derivatization and microextraction process was completed within 3 min at 30 °C, and the liquid top phase was easily obtained by placing the tube in an ice bath. Finally, a narrowbore liquid chromatograph coupled with a UV detector was used to determine the levels of six biogenic amines. The coupling agent-assisted derivatization and liquid-solid phase transition microextraction parameters were also investigated. The quantitative linear ranges were 3-400 µM for histamine, putrescine, spermidine, cadaverine, and tyramine and 5-400 µM for spermine, and the detection limit was 1 µM. The relative standard deviations of the intra- and inter-batches were <5.3% and 8.4%, respectively, while the relative error was <4.5% for both. We successfully applied this simultaneous derivatization-microextraction method to determine the biogenic amines in fermented foods.


Assuntos
Aminas Biogênicas , Microextração em Fase Líquida , Aminas Biogênicas/análise , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Histamina , Humanos , Microextração em Fase Sólida
12.
Mar Drugs ; 19(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925873

RESUMO

In this study, the anti-proliferative effect of ilimaquinone, a sesquiterpene derivative from the marine sponge, in breast cancer cells was investigated. Ilimaquinone inhibited the proliferation of MCF-7 and MDA-MB-231 breast cancer cells with IC50 values of 10.6 µM and 13.5 µM, respectively. Non-tumorigenic human breast epithelial cells were less sensitive to ilimaquinone than breast cancer cells. Flow cytometric and Western blot analysis showed that ilimaquinone induced S-phase arrest by modulating the expression of p-CDC-2 and p21. Ilimaquinone induces apoptosis, which is accompanied by multiple biological biomarkers, including the downregulation of Akt, ERK, and Bax, upregulation of p38, loss of mitochondrial membrane potential, increased reactive oxygen species generation, and induced autophagy. Collectively, these findings suggest that ilimaquinone causes cell cycle arrest as well as induces apoptosis and autophagy in breast cancer cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Poríferos/metabolismo , Quinonas/farmacologia , Sesquiterpenos/farmacologia , Animais , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Quinonas/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Sesquiterpenos/isolamento & purificação , Transdução de Sinais
13.
Environ Toxicol ; 36(6): 1173-1180, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33751830

RESUMO

Elevated autophagy is highly associated with cancer development and progression. Fruit extracts of several plants inhibit activity of autophagy-related protease ATG4B and autophagy activity in colorectal cancer cells. However, the effects of these plant extracts in oral cancer cells remain unclear. In this study, we found that the extracted Tribulus terrestris fruit (TT-(fr)) and Xanthium strumarium fruit had inhibitory effects on autophagy inhibition in both SAS and TW2.6 oral cancer cells. Moreover, the fruit extracts had differential effects on cell proliferation of oral cancer cells. In addition, the fruit extracts hampered cell migration and invasion of oral cancer cells, particularly in TT-(fr) extracts. Our results indicated that TT-(fr) extracts consistently inhibited autophagic flux, cell growth and metastatic characteristics of oral cancer cells, suggesting TT-(fr) might contain function ingredient to suppress oral cancer cells.


Assuntos
Neoplasias Bucais , Tribulus , Autofagia , Proliferação de Células , Frutas , Humanos , Neoplasias Bucais/tratamento farmacológico , Extratos Vegetais/farmacologia
14.
Environ Toxicol ; 36(7): 1316-1325, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33713530

RESUMO

Secondary metabolites in marine organisms exhibit various pharmacological activities against diseases, such as cancer. In this study, the anti-proliferative effect of JBIR-100, a macrolide isolated from Streptomyces sp., was investigated in breast cancer cells. Cell growth was inhibited in response to JBIR-100 treatment concentration- and time-dependently in both MCF-7 and MDA-MB-231 breast cancer cells. JBIR-100 caused apoptosis, as verified by caspase activation and the cleavage of PARP. Western blotting revealed that JBIR-100 modulated the expression of Akt/NF-κB signaling components and Bcl-2 family members. Overexpression of Mcl-1 partially rescued MCF-7 cells from JBIR-100-induced cytotoxicity. In addition, transmission electron microscopy analyses, confocal analysis, and western blot assay indicated that JBIR-100 inhibited autophagy in MCF-7 cells. Exposure to the autophagy inhibitor did not synergize JBIR-100-induced apoptosis. In summary, our results suggested that JBIR-100 may be potentially used for breast cancer therapy.


Assuntos
Neoplasias da Mama , Streptomyces , Apoptose , Autofagia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Humanos , Células MCF-7 , Macrolídeos/farmacologia
15.
Mar Drugs ; 19(1)2020 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33375440

RESUMO

Chemical investigation of the marine soft coral Sarcophyton tenuispiculatum resulted in the isolation of a 1,4-dihydrobenzoquinone, sarcotenuhydroquinone (1), three new cembranoids, sarcotenusenes A‒C (2‒4), and ten previously reported metabolites 5-14. The chemical structures of all isolated metabolites were determined by detailed spectroscopic analyses. In biological assays, anti-inflammatory, cytotoxic, and peroxisome proliferator-activated receptor γ (PPAR-γ) transcription factor assays of all compounds were performed. None of the isolated compounds were found to exhibit activity in the PPAR-γ transcription factor assay. The anti-inflammatory assays showed that (+)-7α,8ß-dihydroxydeepoxysarcophine (13) inhibited the production of IL-1ß to 56 ± 1% at a concentration of 30 µM in lipopolysaccharide (LPS)-stimulated J774A.1 macrophage cells. In addition, 1 and 2 were found to exhibit cytotoxicity towards a panel of cancer cell lines.


Assuntos
Antozoários/metabolismo , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Diterpenos/metabolismo , Hidroquinonas/metabolismo , Monoterpenos/metabolismo , Animais , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Células Hep G2 , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Células MCF-7 , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Estrutura Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Relação Estrutura-Atividade
16.
Food Funct ; 11(11): 9858-9867, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33089839

RESUMO

3ß,7ß,25-Trihydroxycucurbita-5,23(E)-dien-19-al (TCD) is a triterpenoid isolated from wild bitter gourd that is a common tropical vegetable with neuroprotective effects. Because excessive glutamate release is a major cause of neuronal damage in various neurological disorders, the aims of this study were to examine the effect of TCD on glutamate release in vitro and to examine the effect of TCD in vivo. In rat cerebrocortical synaptosomes, TCD reduced 4-aminopyridine (4-AP)-stimulated glutamate release and Ca2+ concentration elevation, but had no effect on plasma membrane potential. TCD-mediated inhibition of 4-AP-induced glutamate release was dependent on the presence of extracellular calcium; persisted in the presence of the glutamate transporter inhibitor dl-TBOA, P/Q-type Ca2+ channel blocker ω-agatoxin IVA, and intracellular Ca2+-releasing inhibitors dantrolene and CGP37157; and was blocked by the vesicular transporter inhibitor bafilomycin A1 and the N-type Ca2+ channel blocker ω-conotoxin GVIA. Molecular docking studies have demonstrated that TCD binds to N-type Ca2+ channels. TCD-mediated inhibition of 4-AP-induced glutamate release was abolished by the Ca2+-dependent protein kinase C (PKC) inhibitor Go6976, but was unaffected by the Ca2+-independent PKC inhibitor rottlerin. Furthermore, TCD considerably reduced the phosphorylation of PKC, PKCα, and myristoylated alanine-rich C kinase substrate, a major presynaptic substrate for PKC. In a rat model of kainic acid (KA)-induced excitotoxicity, TCD pretreatment substantially attenuated KA-induced neuronal death in the CA3 hippocampal region. These results suggest that TCD inhibits synaptosomal glutamate release by suppressing N-type Ca2+ channels and PKC activity and exerts protective effects against KA-induced excitotoxicity in vivo.


Assuntos
Ácido Glutâmico/metabolismo , Ácido Caínico/efeitos adversos , Momordica charantia/química , Doenças do Sistema Nervoso/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Extratos Vegetais/administração & dosagem , Sinaptossomos/efeitos dos fármacos , Triterpenos/administração & dosagem , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/administração & dosagem , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Humanos , Masculino , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/fisiopatologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Sinaptossomos/metabolismo
17.
Int J Mol Sci ; 21(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114727

RESUMO

We recently isolated a cardiac glycoside (CG), αldiginoside, from an indigenous plant in Taiwan, which exhibits potent tumor-suppressive efficacy in oral squamous cell carcinoma (OSCC) cell lines (SCC2095 and SCC4, IC50 < 0.2 µM; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays). Here, we report that αldiginoside caused Sphase arrest and apoptosis, through the inhibition of a series of signaling pathways, including those mediated by cyclin E, phospho-CDC25C (p-CDC25C), and janus kinase/signal transducer and activator of transcription (JAK/STAT)3. αldiginoside induced apoptosis, as indicated by caspase activation and poly (ADP-ribose) polymerase (PARP) cleavage. Equally important, αldiginoside reduced Mcl-1 expression through protein degradation, and overexpression of Mcl-1 partially protected SCC2095 cells from αldiginoside's cytotoxicity. Taken together, these data suggest the translational potential of αldiginoside to foster new therapeutic strategies for OSCC treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma de Células Escamosas/metabolismo , Glicosídeos Cardíacos/farmacologia , Neoplasias Bucais/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteólise , Transdução de Sinais/efeitos dos fármacos
18.
Molecules ; 25(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053784

RESUMO

This study explores the amounts of common chemical ultraviolet (UV) filters (i.e., avobenzone, bemotrizinol, ethylhexyl triazone, octocrylene, and octyl methoxycinnamate) in cosmetics and the human stratum corneum. An ultrasound-vortex-assisted dispersive liquid-liquid microextraction (US-VA-DLLME) method with a high-performance liquid chromatography-diode array detector was used to analyze UV filters. A bio-derived solvent (i.e., anisole) was used as the extractant in the US-VA-DLLME procedure, along with methanol as the dispersant, a vortexing time of 4 min, and ultrasonication for 3 min. The mass-transfer rate of the extraction process was enhanced due to vortex-ultrasound combination. Various C18 end-capped columns were used to investigate the separation characteristics of the UV filters, with XBridge BEH or CORTECS selected as the separation column. Calibration curves were constructed in the 0.05-5 µg/mL (all filters except octocrylene) and 0.1-10 µg/mL (octocrylene) ranges, and excellent analytical linearities with coefficients of determination (r2) above 0.998. The developed method was successfully used to analyze sunscreen. Moreover, experiments were designed to simulate the sunscreen-usage habits of consumers, and the cup method was used to extract UV filters from the human stratum corneum. The results suggest that a makeup remover should be employed to remove water-in-oil sunscreens from skin.


Assuntos
Cosméticos , Epiderme/química , Microextração em Fase Líquida/métodos , Ondas Ultrassônicas , Cromatografia Líquida de Alta Pressão , Humanos , Solventes
19.
Neurochem Int ; 140: 104845, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32911011

RESUMO

Indole-3-carbinol (I3C), found in cruciferous vegetables, has been proposed to exhibit neuroprotective effects. This study aimed to investigate the effect of the I3C derivative [1(4-chloro-3-nitrobenzenesulfonyl)-1H-indol-3-yl]-methanol (CIM), which has superior pharmacokinetic properties to I3C, on glutamate release in rat cerebrocortical nerve terminals (synaptosomes). We observed that CIM dose-dependently inhibited glutamate release evoked by the potassium channel blocker 4-aminopyridine (4-AP). CIM-mediated inhibition of glutamate release was attributed to reduced exocytosis, as it correlated with the removal of extracellular calcium and blocking of the vesicular glutamate transporter but not the glutamate transporter. In addition, CIM decreased 4-AP-evoked intrasynaptosomal Ca2+ elevation; however, it did not alter the synaptosomal membrane potential. The inhibition of P/Q-typeCa2+ channels abolished the effect of CIM on 4-AP-evoked glutamate release, and the effect was not prevented by intracellular Ca2+ release inhibitors. Moreover, the molecular docking study showed that CIM exhibited the highest binding affinity with the P/Q-type Ca2+channels. Finally, the CIM-mediated inhibition of glutamate release was sensitive to calmodulin, adenylate cyclase (AC), and protein kinase A (PKA) inhibitors. Based on these results, we propose that CIM, through the direct suppression of P/Q-type Ca2+ channels, decreases Ca2+ influx and the activation of Ca2+/calmodulin/AC/PKA signaling, thereby inhibiting glutamate release. This finding is crucial for understanding the role of CIM in the central nervous system and for exploiting its potential in therapeutic interventions.


Assuntos
Canais de Cálcio Tipo P/metabolismo , Canais de Cálcio Tipo Q/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Córtex Cerebral/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ácido Glutâmico/metabolismo , Indóis/farmacologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Córtex Cerebral/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Antagonistas de Aminoácidos Excitatórios/química , Antagonistas de Aminoácidos Excitatórios/farmacologia , Indóis/química , Masculino , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley
20.
Biomedicines ; 8(9)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825464

RESUMO

In this study, the anti-tumor activity of ilimaquinone (IQ), a sesquiterpene quinone isolated from marine sponge Halichondria sp., in oral squamous cell carcinoma (OSCC) cells, was investigated. IQ suppressed the viability of the OSCC cell lines SCC4 and SCC2095 with IC50 values of 7.5 and 8.5 µM, respectively. Flow cytometric analysis demonstrated that IQ induced caspase-dependent apoptosis in SCC4 cells and modulated the expression of several cell growth-related gene products, including Akt, p38, Mcl-1, and p53. Notably, p53 knockdown caused higher resistance to IQ's anti-tumor activity. In addition, IQ increased reactive oxygen species generation, which was partially reversed by the addition of antioxidants. Furthermore, it triggered autophagy, as evidenced by acidic organelle formation and LC3B-II and Atg5 expression in SCC4 cells. Pretreatment with the autophagy inhibitor 3-methyladenine or chloroquine partially decreased IQ-induced apoptosis, suggesting that IQ induced protective autophagy. In summary, IQ has potential to be used in OSCC therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA