Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38669622

RESUMO

Recovery and separation of anthropogenic emissions of electronic specialty gases (F-gases, such as CF4 and SF6) from the semiconductor sector are of critical importance. In this work, the hierarchical porous UiO-66-Br2@PS/DVB-packed column was constructed by a high internal phase emulsions strategy. UiO-66-Br2@PS/DVB exhibits a superior selectivity of CF4/N2 (2.67) and SF6/N2 (3.34) predicted by the IAST due to the diffusion limitation in the micropore and the gas-framework affinity. Especially, UiO-66-Br2@PS/DVB showed significant CF4 and SF6 retention and enabled the successful separation of CF4/N2 and SF6/N2 with a resolution of 2.37 and 8.89, respectively, when used as a packed column in gas chromatography. Compared with the Porapak Q column, the HETP of the UiO-66-Br2@PS/DVB-packed column decreased and showed good reproducibility. This research not only offers a convenient method for fabricating a hierarchical porous MOF-packed column but also showcases the prospective utilization of MOFs for the separation of the F-gas/N2 mixture.

2.
Carbohydr Polym ; 306: 120587, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746579

RESUMO

Hydrogel electrolytes have shown great promise in the field of flexible energy storage. However, the conventional hydrogel electrolytes have poor mechanical properties and are not recyclable. In addition, conventional hydrogel electrolytes cannot adapt to low and high temperature operating environments. In this study, starch/PVA/dimethyl sulfoxide/CaCl2 (SPDC) organohydrogel was prepared by the freezing-thawing method. Dimethyl sulfoxide (DMSO) and CaCl2 was introduced to enhance the mechanical properties and widen the working temperature range of the starch/PVA hydrogel. The SPDC organohydrogel had high strength, toughness and good recyclability. The SPDC organohydrogel and the recycled SPDC organohydrogel was used as the electrolyte to assemble the flexible supercapacitor with activated carbon as the electrode. The supercapacitor prepared by SPDC organohydrogel electrolyte exhibited high areal capacitance of 156.50 mF/cm2 at a current density of 1 mA/cm2 and high capacitance retention rate of 82.23 % after 8000 cycles of charging and discharging. The supercapacitor prepared by the recycled organohydrogel electrolyte exhibited a high capacitance retention rate of 97.58 %. In addition, the supercapacitor could withstand different angular bending shapes and had wide temperature adaptability from -20 °C to 80 °C. The work provided a new version for the development of "green" hydrogel electrolyte for all-solid-state supercapacitor.

3.
ACS Appl Mater Interfaces ; 15(3): 4385-4397, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36629280

RESUMO

Thermochromic smart windows are considered to be promising energy-saving devices for reducing energy consumption in buildings. The ideal materials for thermochromic smart windows should have high transmittance, high solar modulation, low phase-transition temperature, and excellent high-temperature thermal stability, which are difficult to achieve simultaneously. This work reports a simple one-step low-temperature polymerization method to prepare a thermo-responsive poly(N-isopropylacrylamide)/hydroxypropylmethyl cellulose (PNIPAM/HPMC) hydrogel achieving the above performances simultaneously. The low-temperature polymerization environment endowed the hydrogel with a high luminous transmittance (Tlum) of 90.82%. HPMC as a functional material effectively enhanced the mechanical properties and thermal stability of the hydrogel. Meanwhile, the PNIPAM/HPMC hydrogel showed a low phase-transition temperature (∼32 °C) and high solar modulation (ΔTsol = 81.52%), which proved that it is an ideal material for thermochromic smart windows. Moreover, a PNIPAM/HPMC smart window exhibited high light transmittance (T380-760 = 86.27%), excellent light modulation (ΔT365 = 74.27%, ΔT380-760 = 86.17%, and ΔT940 = 63.93%), good indoor temperature regulation ability and stability, which indicated that it was an attractive candidate for application in reducing energy consumption in buildings. This work also provides an option and direction for modifying PNIPAM-based thermochromic smart windows.

4.
Int J Biol Macromol ; 221: 1002-1011, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36113584

RESUMO

High-performance hydrogels with favorable mechanical strength, high modulus, sufficient ionic conductivity and freezing resistance have far-ranging applications in flexible electronic equipment. Nevertheless, it is challenging to combine admirable mechanical properties and high ionic conductivity into one hydrogel. Herein, a facile strategy was developed for the preparation of the hydrogel with excellent strength (1.45 MPa), super Young's modulus (8.85 MPa) and high conductivity (1.47 S/m) using starch and poly(vinyl alcohol) (PVA) as raw materials. The starch/PVA/Gly/Na3Cit (SPGN) gel was firstly cross-linked by crystalline regions of PVA upon freezing-thawing cycles. It was further immersed in the saturated Na3Cit solution to enhance the interaction between the substrates through the salting-out effect. The effect of soaking time on the crystallinity, intermolecular interactions, mechanical and electrical properties of SPGN gel was demonstrated by X-ray diffraction, Fourier transform infrared spectroscopy, tensile and impedance testing measurements. The introduction of glycerol and Na3Cit also endowed SPGN gels with favorable anti-freezing properties. The SPGN gel could maintain high mechanical flexibility and ionic conductivity at -15 °C.


Assuntos
Álcool de Polivinil , Amido , Álcool de Polivinil/química , Hidrogéis/química , Condutividade Elétrica , Íons , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA