Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Math Biosci Eng ; 20(11): 20002-20024, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38052634

RESUMO

In this study, an accurate tool is provided for the evaluation of the effect of joint motion effect on gait stability. This quantitative gait evaluation method relies exclusively on the analysis of data acquired using acceleration sensors. First, the acceleration signal of lower limb motion is collected dynamically in real-time through the acceleration sensor. Second, an algorithm based on improved dynamic time warping (DTW) is proposed and used to calculate the gait stability index of the lower limbs. Finally, the effects of different joint braces on gait stability are analyzed. The experimental results show that the joint brace at the ankle and the knee reduces the range of motions of both ankle and knee joints, and a certain impact is exerted on the gait stability. In comparison to the ankle joint brace, the knee joint brace inflicts increased disturbance on the gait stability. Compared to the joint motion of the braced side, which showed a large deviation, the joint motion of the unbraced side was more similar to that of the normal walking process. In this paper, the quantitative evaluation algorithm based on DTW makes the results more intuitive and has potential application value in the evaluation of lower limb dysfunction, clinical training and rehabilitation.


Assuntos
Marcha , Dispositivos Eletrônicos Vestíveis , Fenômenos Biomecânicos , Caminhada , Aceleração
2.
Math Biosci Eng ; 20(9): 16362-16382, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37920016

RESUMO

To enhance the reproducibility of motor unit number index (MUNIX) for evaluating neurological disease progression, this paper proposes a negative entropy-based fast independent component analysis (FastICA) demixing method to assess MUNIX reproducibility in the presence of inter-channel mixing of electromyography (EMG) signals acquired by high-density electrodes. First, composite surface EMG (sEMG) signals were obtained using high-density surface electrodes. Second, the FastICA algorithm based on negative entropy was employed to determine the orthogonal projection matrix that minimizes the negative entropy of the projected signal and effectively separates mixed sEMG signals. Finally, the proposed experimental approach was validated by introducing an interrelationship criterion to quantify independence between adjacent channel EMG signals, measuring MUNIX repeatability using coefficient of variation (CV), and determining motor unit number and size through MUNIX. Results analysis shows that the inclusion of the full (128) channel sEMG information leads to a reduction in CV value by $1.5 \pm 0.1$ and a linear decline in CV value with an increase in the number of channels. The correlation between adjacent channels in participants decreases by $0.12 \pm 0.05$ as the number of channels gradually increases. The results demonstrate a significant reduction in the number of interrelationships between sEMG signals following negative entropy-based FastICA processing, compared to the mixed sEMG signals. Moreover, this decrease in interrelationships becomes more pronounced with an increasing number of channels. Additionally, the CV of MUNIX gradually decreases with an increase in the number of channels, thereby optimizing the issue of abnormal MUNIX repeatability patterns and further enhancing the reproducibility of MUNIX based on high-density surface EMG signals.


Assuntos
Neurônios Motores , Músculo Esquelético , Humanos , Reprodutibilidade dos Testes , Eletromiografia/métodos , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA