Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Chem Biol Interact ; 395: 111010, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38679114

RESUMO

The incidence and mortality rate of myocardial infarction are increasing per year in China. The polarization of macrophages towards the classically activated macrophages (M1) phenotype is of utmost importance in the progression of inflammatory stress subsequent to myocardial infarction. Poly (ADP-ribose) polymerase 1(PARP1) is the ubiquitous and best characterized member of the PARP family, which has been reported to support macrophage polarization towards the pro-inflammatory phenotype. Yet, the role of PARP1 in myocardial ischemic injury remains to be elucidated. Here, we demonstrated that a myocardial infarction mouse model induced cardiac damage characterized by cardiac dysfunction and increased PARP1 expression in cardiac macrophages. Inhibition of PARP1 by the PJ34 inhibitors could effectively alleviate M1 macrophage polarization, reduce infarction size, decrease inflammation and rescue the cardiac function post-MI in mice. Mechanistically, the suppression of PARP1 increase NLRC5 gene expression, and thus inhibits the NF-κB pathway, thereby decreasing the production of inflammatory cytokines such as IL-1ß and TNF-α. Inhibition of NLRC5 promote infection by effectively abolishing the influence of this mechanism discussed above. Interestingly, inhibition of NLRC5 promotes cardiac macrophage polarization toward an M1 phenotype but without having major effects on M2 macrophages. Our results demonstrate that inhibition of PARP1 increased NLRC5 gene expression, thereby suppressing M1 polarization, improving cardiac function, decreasing infarct area and attenuating inflammatory injury. The aforementioned findings provide new insights into the proinflammatory mechanisms that drive macrophage polarization following myocardial infarction, thereby introducing novel potential targets for future therapeutic interventions in individuals affected by myocardial infarction.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos , Infarto do Miocárdio , NF-kappa B , Poli(ADP-Ribose) Polimerase-1 , Animais , Masculino , Camundongos , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , NF-kappa B/metabolismo , Fenantrenos/farmacologia , Fenantrenos/uso terapêutico , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Regulação para Cima/efeitos dos fármacos
2.
Oxid Med Cell Longev ; 2021: 6256399, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659637

RESUMO

The main objective of this study was to investigate the diurnal differences in Period 2 (PER2) expression in myocardial ischemia-reperfusion (I/R) injury. We investigated diurnal variations in oxidative stress and energy metabolism after myocardial I/R in vitro and in vivo. In addition, we also analyzed the effects of H2O2 treatment and serum shock in H9c2 cells transfected with silencing RNA against Per2 (siRNA-Per2) in vitro. We used C57BL/6 male mice to construct a model of I/R injury at zeitgeber time (ZT) 2 and ZT14 by synchronizing the circadian rhythms. Our in vivo analysis demonstrated that there were diurnal differences in the severity of injury caused by myocardial infarctions, with more injury occurring in the daytime. PER2 was significantly reduced in heart tissue in the daytime and was higher at night. Our results also showed that more severe injury of mitochondrial function in daytime produced more reactive oxygen species (ROS) and less ATP, which increased myocardial injury. In vitro, our findings presented a similar trend showing that apoptosis of H9c2 cells was increased when PER2 expression was lower. Meanwhile, downregulation of PER2 disrupted the oxidative balance by increasing ROS and mitochondrial injury. The result was a reduction in ATP and failure to provide sufficient energy protection for cardiomyocytes.


Assuntos
Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteínas Circadianas Period/metabolismo , Animais , Masculino , Camundongos , Espécies Reativas de Oxigênio
3.
Mol Cell Biochem ; 476(5): 2125-2134, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33547545

RESUMO

BACKGROUND: Neurotoxicity induced by local anesthetics (LAs) is potentially life threatening, especially for patients with underlying diseases like diabetes. The anesthetic bupivacaine (Bup) has been reported to induce neurotoxicity mediated by reactive oxygen species (ROS), which is aggravated by hyperglycemia. Krüppel-like factor 9 (KLF9), an axon growth-suppressing transcription factor, plays a key role in neuronal maturation and promotes oxidative stress. This study was designed to investigate whether and how KLF9 regulates ROS levels related to LA neurotoxicity under hyperglycemic conditions. METHODS: Klf9/GFP ShRNA (LV Sh-Klf9) was used to achieve stable Klf9 knockdown in the SH-SY5Y cell line. KLF9-deficient and normal cells were cultured under normal or high-glucose (HG) culture conditions and then exposed to Bup. Cell viability, intracellular and mitochondrial ROS, and mitochondrial membrane potential (ΔΨm) were detected to examine the role of KLF9. Thereafter, KLF9-deficient and normal cells were pretreated with small-interfering RNA targeting peroxiredoxin 6 (siRNA-Prdx6) to determine if PRDX6 was the target protein in HG-aggravated Bup neurotoxicity. RESULTS: The mRNA and protein levels of KLF9 were increased after Bup and hyperglycemia treatment. In addition, cell survival and mitochondrial function were significantly improved, and ROS production was decreased after Sh-Klf9 treatment compared with Sh-Ctrl. Furthermore, the expression of PRDX6 was suppressed by Bup in hyperglycemic cultures and was upregulated in the Sh-Klf9 group. Moreover, the protection provided by KLF9 deficiency for cell survival, the increase in ROS production in cells and mitochondria, and the disruption of mitochondrial function were abolished by Prdx6 knockdown. CONCLUSIONS: The results of this study demonstrated that hyperglycemia aggravated Bup neurotoxicity by upregulating KLF9 expression, which repressed the antioxidant PRDX6 and led to mitochondrial dysfunction, ROS burst, and cell death. Understanding this mechanism may, thus, offer valuable insights for the prevention and treatment of neurotoxicity induced by LAs, especially in diabetic patients.


Assuntos
Bupivacaína/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hiperglicemia/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Síndromes Neurotóxicas/metabolismo , Peroxirredoxina VI/biossíntese , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Hiperglicemia/genética , Hiperglicemia/patologia , Fatores de Transcrição Kruppel-Like/genética , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/patologia , Peroxirredoxina VI/genética
4.
Neurosci Bull ; 36(9): 1035-1045, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32683554

RESUMO

Ischemic stroke is one of the leading causes of death worldwide. In the post-stroke stage, cardiac dysfunction is common and is known as the brain-heart interaction. Diabetes mellitus worsens the post-stroke outcome. Stroke-induced systemic inflammation is the major causative factor for the sequential complications, but the mechanism underlying the brain-heart interaction in diabetes has not been clarified. The NLRP3 (NLR pyrin domain-containing 3) inflammasome, an important component of the inflammation after stroke, is mainly activated in M1-polarized macrophages. In this study, we found that the cardiac dysfunction induced by ischemic stroke is more severe in a mouse model of type 2 diabetes. Meanwhile, M1-polarized macrophage infiltration and NLRP3 inflammasome activation increased in the cardiac ventricle after diabetic stroke. Importantly, the NLRP3 inflammasome inhibitor CY-09 restored cardiac function, indicating that the M1-polarized macrophage-NLRP3 inflammasome activation is a pathway underlying the brain-heart interaction after diabetic stroke.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiopatias , Inflamassomos , AVC Isquêmico , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/complicações , Cardiopatias/etiologia , AVC Isquêmico/complicações , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA