Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Immunity ; 57(2): 379-399.e18, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301653

RESUMO

Palatine tonsils are secondary lymphoid organs (SLOs) representing the first line of immunological defense against inhaled or ingested pathogens. We generated an atlas of the human tonsil composed of >556,000 cells profiled across five different data modalities, including single-cell transcriptome, epigenome, proteome, and immune repertoire sequencing, as well as spatial transcriptomics. This census identified 121 cell types and states, defined developmental trajectories, and enabled an understanding of the functional units of the tonsil. Exemplarily, we stratified myeloid slan-like subtypes, established a BCL6 enhancer as locally active in follicle-associated T and B cells, and identified SIX5 as putative transcriptional regulator of plasma cell maturation. Analyses of a validation cohort confirmed the presence, annotation, and markers of tonsillar cell types and provided evidence of age-related compositional shifts. We demonstrate the value of this resource by annotating cells from B cell-derived mantle cell lymphomas, linking transcriptional heterogeneity to normal B cell differentiation states of the human tonsil.


Assuntos
Linfócitos B , Tonsila Palatina , Humanos , Adulto , Linfócitos B/metabolismo
2.
Nat Commun ; 14(1): 6947, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935654

RESUMO

Disease-causing mutations in genes encoding transcription factors (TFs) can affect TF interactions with their cognate DNA-binding motifs. Whether and how TF mutations impact upon the binding to TF composite elements (CE) and the interaction with other TFs is unclear. Here, we report a distinct mechanism of TF alteration in human lymphomas with perturbed B cell identity, in particular classic Hodgkin lymphoma. It is caused by a recurrent somatic missense mutation c.295 T > C (p.Cys99Arg; p.C99R) targeting the center of the DNA-binding domain of Interferon Regulatory Factor 4 (IRF4), a key TF in immune cells. IRF4-C99R fundamentally alters IRF4 DNA-binding, with loss-of-binding to canonical IRF motifs and neomorphic gain-of-binding to canonical and non-canonical IRF CEs. IRF4-C99R thoroughly modifies IRF4 function by blocking IRF4-dependent plasma cell induction, and up-regulates disease-specific genes in a non-canonical Activator Protein-1 (AP-1)-IRF-CE (AICE)-dependent manner. Our data explain how a single mutation causes a complex switch of TF specificity and gene regulation and open the perspective to specifically block the neomorphic DNA-binding activities of a mutant TF.


Assuntos
Fatores Reguladores de Interferon , Linfoma , Humanos , Linfócitos B/metabolismo , DNA , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Linfoma/genética
3.
Leuk Lymphoma ; 63(5): 1080-1090, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34957890

RESUMO

BCOR is a component of a variant Polycomb repressive complex 1 (PRC1.1). PRC1 and PRC2 complexes together constitute a major gene regulatory system critical for appropriate cellular differentiation. The gene is upregulated in germinal center (GC) B cells and mutated in a number of hematologic malignancies. We report BCOR inactivating alterations in 4/7 classic Hodgkin lymphoma (cHL) cell lines, subclonal somatic mutations in Hodgkin and Reed-Sternberg (HRS) cells of 4/10 cHL cases, and deletions in HRS cells of 7/17 primary cHL cases. In mice, conditional loss of Bcor driven by AID-Cre in GC B cells resulted in gene expression changes of 46 genes (>2-fold) including upregulated Lef1 that encodes a transcription factor responsible for establishing T-cell identity and Il9r (interleukin-9 receptor), an important member of the cytokine network in cHL. Our findings suggest a role for BCOR loss in cHL pathogenesis and GC-B cell homeostasis.


Assuntos
Doença de Hodgkin , Animais , Doença de Hodgkin/patologia , Humanos , Mutação com Perda de Função , Camundongos , Mutação , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Células de Reed-Sternberg/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
4.
J Immunol ; 206(12): 2839-2851, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34117106

RESUMO

Neonatal and infant immune responses are characterized by a limited capability to generate protective Ab titers and memory B cells as seen in adults. Multiple studies support an immature or even impaired character of umbilical cord blood (UCB) B cells themselves. In this study, we provide a comprehensive molecular and functional comparison of B cell subsets from UCB and adult peripheral blood. Most UCB B cells have a mature, naive B cell phenotype as seen in adults. The UCB Ig repertoire is highly variable but interindividually conserved, as BCR clonotypes are frequently shared between neonates. Furthermore, UCB B cells show a distinct transcriptional program that confers accelerated responsiveness to stimulation and facilitated IgA class switching. Stimulation drives extensive differentiation into Ab-secreting cells, presumably limiting memory B cell formation. Humanized mice suggest that the distinctness of UCB versus adult B cells is already reflected by the developmental program of hematopoietic precursors, arguing for a layered B-1/B-2 lineage system as in mice, albeit our findings suggest only partial comparability to murine B-1 cells. Our study shows that UCB B cells are not immature or impaired but differ from their adult mature counterpart in a conserved BCR repertoire, efficient IgA class switching, and accelerated, likely transient response dynamics.


Assuntos
Linfócitos B/imunologia , Sangue Fetal/imunologia , Imunoglobulinas/imunologia , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos NOD , Receptores de Antígenos de Linfócitos B/imunologia
5.
Leukemia ; 35(4): 968-981, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33686198

RESUMO

Classical Hodgkin lymphoma (cHL) is unique among lymphoid malignancies in several key biological features. (i) The Hodgkin and Reed-Sternberg (HRS) tumor cells are rare among an extensive and complex microenvironment. (ii) They derive from B cells, but have largely lost the B-cell typical gene expression program. (iii) Their specific origin appears to be pre-apoptotic germinal center (GC) B cells. (iv) They consistently develop bi- or multinucleated Reed-Sternberg cells from mononuclear Hodgkin cells. (v) They show constitutive activation of numerous signaling pathways. Recent studies have begun to uncover the basis of these specific features of cHL: HRS cells actively orchestrate their complex microenvironment and attract many distinct subsets of immune cells into the affected tissues, to support their survival and proliferation, and to create an immunosuppressive environment. Reed-Sternberg cells are generated by incomplete cytokinesis and refusion of Hodgkin cells. Epstein-Barr virus (EBV) plays a major role in the rescue of crippled GC B cells from apoptosis and hence is a main player in early steps of lymphomagenesis of EBV+ cHL cases. The analysis of the landscape of genetic lesions in HRS cells so far did not reveal any highly recurrent HRS cell-specific lesions, but major roles of genetic lesions in members of the NF-κB and JAK/STAT pathways and of factors of immune evasion. It is perhaps the combination of the genetic lesions and the peculiar cellular origin of HRS cells that are disease defining. A combination of such genetic lesions and multiple cellular interactions with cells in the microenvironment causes the constitutive activation of many signaling pathways, often interacting in complex fashions. In nodular lymphocyte predominant Hodgkin lymphoma, the GC B cell-derived tumor cells have largely retained their typical GC B-cell expression program and follicular microenvironment. For IgD-positive cases, bacterial antigen triggering has recently been implicated in early stages of its pathogenesis.


Assuntos
Suscetibilidade a Doenças , Doença de Hodgkin/etiologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Biomarcadores Tumorais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/metabolismo , Gerenciamento Clínico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Predisposição Genética para Doença , Variação Genética , Doença de Hodgkin/diagnóstico , Doença de Hodgkin/metabolismo , Doença de Hodgkin/terapia , Humanos , Evasão da Resposta Imune , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
6.
Nat Commun ; 11(1): 2465, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424289

RESUMO

Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is a rare lymphoma of B-cell origin with frequent expression of functional B-cell receptors (BCRs). Here we report that expression cloning followed by antigen screening identifies DNA-directed RNA polymerase beta' (RpoC) from Moraxella catarrhalis as frequent antigen of BCRs of IgD+ LP cells. Patients show predominance of HLA-DRB1*04/07 and the IgVH genes encode extraordinarily long CDR3s. High-titer, light-chain-restricted anti-RpoC IgG1/κ-type serum-antibodies are additionally found in these patients. RpoC and MID/hag, a superantigen co-expressed by Moraxella catarrhalis that is known to activate IgD+ B cells by binding to the Fc domain of IgD, have additive activation effects on the BCR, the NF-κB pathway and the proliferation of IgD+ DEV cells expressing RpoC-specific BCRs. This suggests an additive antigenic and superantigenic stimulation of B cells with RpoC-specific IgD+ BCRs under conditions of a permissive MHC-II haplotype as a model of NLPHL lymphomagenesis, implying future treatment strategies.


Assuntos
Antígenos de Bactérias/imunologia , Linfócitos B/imunologia , Doença de Hodgkin/imunologia , Doença de Hodgkin/microbiologia , Moraxella catarrhalis/imunologia , Adolescente , Adulto , Idoso , Autoantígenos/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Criança , RNA Polimerases Dirigidas por DNA/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Doença de Hodgkin/sangue , Humanos , Imunoglobulina D/metabolismo , Fragmentos Fab das Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/genética , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Receptores de Antígenos de Linfócitos B/metabolismo
7.
Nat Commun ; 10(1): 1459, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926794

RESUMO

Burkitt lymphoma (BL) is the most common B-cell lymphoma in children. Within the International Cancer Genome Consortium (ICGC), we performed whole genome and transcriptome sequencing of 39 sporadic BL. Here, we unravel interaction of structural, mutational, and transcriptional changes, which contribute to MYC oncogene dysregulation together with the pathognomonic IG-MYC translocation. Moreover, by mapping IGH translocation breakpoints, we provide evidence that the precursor of at least a subset of BL is a B-cell poised to express IGHA. We describe the landscape of mutations, structural variants, and mutational processes, and identified a series of driver genes in the pathogenesis of BL, which can be targeted by various mechanisms, including IG-non MYC translocations, germline and somatic mutations, fusion transcripts, and alternative splicing.


Assuntos
Linfoma de Burkitt/genética , Genoma Humano , Transcriptoma/genética , Adolescente , Processamento Alternativo/genética , Sequência de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Criança , Pré-Escolar , Pontos de Quebra do Cromossomo , Estudos de Coortes , Metilação de DNA/genética , Análise Mutacional de DNA , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação INDEL/genética , Masculino , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fases de Leitura Aberta/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas c-myc/genética , Translocação Genética , Sequenciamento Completo do Genoma
8.
Blood ; 132(25): 2616-2618, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30573514
10.
J Clin Invest ; 128(7): 2996-3007, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29889102

RESUMO

Very few B cells in germinal centers (GCs) and extrafollicular (EF) regions of lymph nodes express CD30. Their specific features and relationship to CD30-expressing Hodgkin and Reed/Sternberg (HRS) cells of Hodgkin lymphoma are unclear but highly relevant, because numerous patients with lymphoma are currently treated with an anti-CD30 immunotoxin. We performed a comprehensive analysis of human CD30+ B cells. Phenotypic and IgV gene analyses indicated that CD30+ GC B lymphocytes represent typical GC B cells, and that CD30+ EF B cells are mostly post-GC B cells. The transcriptomes of CD30+ GC and EF B cells largely overlapped, sharing a strong MYC signature, but were strikingly different from conventional GC B cells and memory B and plasma cells, respectively. CD30+ GC B cells represent MYC+ centrocytes redifferentiating into centroblasts; CD30+ EF B cells represent active, proliferating memory B cells. HRS cells shared typical transcriptome patterns with CD30+ B cells, suggesting that they originate from these lymphocytes or acquire their characteristic features during lymphomagenesis. By comparing HRS to normal CD30+ B cells we redefined aberrant and disease-specific features of HRS cells. A remarkable downregulation of genes regulating genomic stability and cytokinesis in HRS cells may explain their genomic instability and multinuclearity.


Assuntos
Subpopulações de Linfócitos B/imunologia , Doença de Hodgkin/imunologia , Antígeno Ki-1/metabolismo , Subpopulações de Linfócitos B/classificação , Subpopulações de Linfócitos B/patologia , Genes de Cadeia Pesada de Imunoglobulina , Genes myc , Centro Germinativo/imunologia , Centro Germinativo/patologia , Doença de Hodgkin/genética , Doença de Hodgkin/patologia , Humanos , Switching de Imunoglobulina , Região Variável de Imunoglobulina/genética , Memória Imunológica , Imunofenotipagem , Linfonodos/imunologia , Linfonodos/patologia , Mutação , Células de Reed-Sternberg/imunologia , Células de Reed-Sternberg/patologia , Transcriptoma , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
11.
Cancer Immunol Res ; 5(12): 1122-1132, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29070649

RESUMO

The cellular microenvironment in classical Hodgkin lymphoma (cHL) is dominated by a mixed infiltrate of inflammatory cells with typically only about 1% Hodgkin and Reed/Sternberg (HRS) tumor cells. T cells are usually the largest population of cells in the cHL microenvironment, encompassing T helper (Th) cells, regulatory T cells (Tregs), and cytotoxic T cells. Th cells and Tregs presumably provide essential survival signals for HRS cells. Tregs are also involved in rescuing HRS cells from antitumor immune responses. An understanding of the immune evasion strategies of HRS cells is not only relevant for a characterization of the pathophysiology of cHL but is also clinically relevant, given the current treatment approaches targeting checkpoint inhibitors. Here, we characterized the cHL-specific CD4+ T-cell infiltrate regarding its role in immune evasion. Global gene expression analysis of CD4+ Th cells and Tregs isolated from cHL lymph nodes and reactive tonsils revealed that Treg signatures were enriched in CD4+ Th cells of cHL. Hence, HRS cells may induce Treg differentiation in Th cells, a conclusion supported by in vitro studies with Th cells and cHL cell lines. We also found evidence for immune-suppressive purinergic signaling and a role of the inhibitory receptor-ligand pairs B- and T-cell lymphocyte attenuator-herpesvirus entry mediator and CD200R-CD200 in promoting immune evasion. Taken together, this study highlights the relevance of Treg induction and reveals new immune checkpoint-driven immune evasion strategies in cHL. Cancer Immunol Res; 5(12); 1122-32. ©2017 AACR.


Assuntos
Doença de Hodgkin/imunologia , Evasão da Resposta Imune , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Doença de Hodgkin/genética , Doença de Hodgkin/patologia , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
12.
Haematologica ; 101(11): 1380-1389, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27390358

RESUMO

MicroRNA are well-established players in post-transcriptional gene regulation. However, information on the effects of microRNA deregulation mainly relies on bioinformatic prediction of potential targets, whereas proof of the direct physical microRNA/target messenger RNA interaction is mostly lacking. Within the International Cancer Genome Consortium Project "Determining Molecular Mechanisms in Malignant Lymphoma by Sequencing", we performed miRnome sequencing from 16 Burkitt lymphomas, 19 diffuse large B-cell lymphomas, and 21 follicular lymphomas. Twenty-two miRNA separated Burkitt lymphomas from diffuse large B-cell lymphomas/follicular lymphomas, of which 13 have shown regulation by MYC. Moreover, we found expression of three hitherto unreported microRNA. Additionally, we detected recurrent mutations of hsa-miR-142 in diffuse large B-cell lymphomas and follicular lymphomas, and editing of the hsa-miR-376 cluster, providing evidence for microRNA editing in lymphomagenesis. To interrogate the direct physical interactions of microRNA with messenger RNA, we performed Argonaute-2 photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation experiments. MicroRNA directly targeted 208 messsenger RNA in the Burkitt lymphomas and 328 messenger RNA in the non-Burkitt lymphoma models. This integrative analysis discovered several regulatory pathways of relevance in lymphomagenesis including Ras, PI3K-Akt and MAPK signaling pathways, also recurrently deregulated in lymphomas by mutations. Our dataset reveals that messenger RNA deregulation through microRNA is a highly relevant mechanism in lymphomagenesis.


Assuntos
Linfoma de Células B/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA/métodos , Adolescente , Linfoma de Burkitt/genética , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Centro Germinativo , Humanos , Lactente , Recém-Nascido , Linfoma Folicular/genética , Linfoma Difuso de Grandes Células B/genética , Masculino , MicroRNAs/genética , Mutação , Edição de RNA
13.
Semin Cancer Biol ; 39: 32-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27221964

RESUMO

Hodgkin and Reed/Sternberg (HRS) cells in classical Hodgkin lymphoma (HL) show constitutive activity of both the canonical and non-canonical NF-κB signaling pathways. The central pathogenetic role of this activity is indicated from studies with HL cell lines, which undergo apoptosis upon NF-κB inhibition. Multiple factors contribute to the strong NF-κB activity of HRS cells. This includes interaction with other cells in the lymphoma microenvironment through CD30, CD40, BCMA and other receptors, but also recurrent somatic genetic lesions in various factors of the NF-κB pathway, including destructive mutations in negative regulators of NF-κB signaling (e.g. TNFAIP3, NFKBIA), and copy number gains of genes encoding positive regulators (e.g. REL, MAP3K14). In Epstein-Barr virus-positive cases of classical HL, the virus-encoded latent membrane protein 1 causes NF-κB activation by mimicking an active CD40 receptor. NF-κB activity is also seen in the tumor cells of the rare nodular lymphocyte predominant form of HL, but the causes for this activity are largely unclear.


Assuntos
Doença de Hodgkin/genética , Doença de Hodgkin/metabolismo , NF-kappa B/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Doença de Hodgkin/patologia , Doença de Hodgkin/virologia , Humanos , Mutação , NF-kappa B/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral
14.
Blood ; 128(1): 82-92, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27127301

RESUMO

To interrogate signaling pathways activated in mantle cell lymphoma (MCL) in vivo, we contrasted gene expression profiles of 55 tumor samples isolated from blood and lymph nodes from 43 previously untreated patients with active disease. In addition to lymph nodes, MCL often involves blood, bone marrow, and spleen and is incurable for most patients. Recently, the Bruton tyrosine kinase (BTK) inhibitor ibrutinib demonstrated important clinical activity in MCL. However, the role of specific signaling pathways in the lymphomagenesis of MCL and the biologic basis for ibrutinib sensitivity of these tumors are unknown. Here, we demonstrate activation of B-cell receptor (BCR) and canonical NF-κB signaling specifically in MCL cells in the lymph node. Quantification of BCR signaling strength, reflected in the expression of BCR regulated genes, identified a subset of patients with inferior survival after cytotoxic therapy. Tumor proliferation was highest in the lymph node and correlated with the degree of BCR activation. A subset of leukemic tumors showed active BCR and NF-κB signaling apparently independent of microenvironmental support. In one of these samples, we identified a novel somatic mutation in RELA (E39Q). This sample was resistant to ibrutinib-mediated inhibition of NF-κB and apoptosis. In addition, we identified germ line variants in genes encoding regulators of the BCR and NF-κB pathway previously implicated in lymphomagenesis. In conclusion, BCR signaling, activated in the lymph node microenvironment in vivo, appears to promote tumor proliferation and survival and may explain the sensitivity of this lymphoma to BTK inhibitors.


Assuntos
Apoptose , Resistencia a Medicamentos Antineoplásicos/genética , Linfoma de Célula do Manto , Mutação de Sentido Incorreto , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Fator de Transcrição RelA , Adenina/análogos & derivados , Substituição de Aminoácidos , Apoptose/efeitos dos fármacos , Apoptose/genética , Intervalo Livre de Doença , Feminino , Humanos , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/mortalidade , Masculino , Piperidinas , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Taxa de Sobrevida , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
15.
Nat Genet ; 47(11): 1316-1325, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26437030

RESUMO

Although Burkitt lymphomas and follicular lymphomas both have features of germinal center B cells, they are biologically and clinically quite distinct. Here we performed whole-genome bisulfite, genome and transcriptome sequencing in 13 IG-MYC translocation-positive Burkitt lymphoma, nine BCL2 translocation-positive follicular lymphoma and four normal germinal center B cell samples. Comparison of Burkitt and follicular lymphoma samples showed differential methylation of intragenic regions that strongly correlated with expression of associated genes, for example, genes active in germinal center dark-zone and light-zone B cells. Integrative pathway analyses of regions differentially methylated in Burkitt and follicular lymphomas implicated DNA methylation as cooperating with somatic mutation of sphingosine phosphate signaling, as well as the TCF3-ID3 and SWI/SNF complexes, in a large fraction of Burkitt lymphomas. Taken together, our results demonstrate a tight connection between somatic mutation, DNA methylation and transcriptional control in key B cell pathways deregulated differentially in Burkitt lymphoma and other germinal center B cell lymphomas.


Assuntos
Linfoma de Burkitt/genética , Metilação de DNA , Linfoma Folicular/genética , Mutação , Transcriptoma/genética , Adolescente , Adulto , Idoso , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Genoma Humano/genética , Centro Germinativo/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais/genética , Translocação Genética , Adulto Jovem
16.
Proc Natl Acad Sci U S A ; 112(38): E5261-70, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26351698

RESUMO

Despite the established role of the transcription factor MYC in cancer, little is known about the impact of a new class of transcriptional regulators, the long noncoding RNAs (lncRNAs), on MYC ability to influence the cellular transcriptome. Here, we have intersected RNA-sequencing data from two MYC-inducible cell lines and a cohort of 91 B-cell lymphomas with or without genetic variants resulting in MYC overexpression. We identified 13 lncRNAs differentially expressed in IG-MYC-positive Burkitt lymphoma and regulated in the same direction by MYC in the model cell lines. Among them, we focused on a lncRNA that we named MYC-induced long noncoding RNA (MINCR), showing a strong correlation with MYC expression in MYC-positive lymphomas. To understand its cellular role, we performed RNAi and found that MINCR knockdown is associated with an impairment in cell cycle progression. Differential gene expression analysis after RNAi showed a significant enrichment of cell cycle genes among the genes down-regulated after MINCR knockdown. Interestingly, these genes are enriched in MYC binding sites in their promoters, suggesting that MINCR acts as a modulator of the MYC transcriptional program. Accordingly, MINCR knockdown was associated with a reduction in MYC binding to the promoters of selected cell cycle genes. Finally, we show that down-regulation of Aurora kinases A and B and chromatin licensing and DNA replication factor 1 may explain the reduction in cellular proliferation observed on MINCR knockdown. We, therefore, suggest that MINCR is a newly identified player in the MYC transcriptional network able to control the expression of cell cycle genes.


Assuntos
Linfoma de Burkitt/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Linfoma de Células B/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante/metabolismo , Sequência de Bases , Sítios de Ligação , Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatina/metabolismo , Perfilação da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Neoplasias/metabolismo , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismo , Homologia de Sequência do Ácido Nucleico
18.
Oncotarget ; 6(29): 27332-42, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25714012

RESUMO

Bortezomib (BZM) is the first proteasome inhibitor approved for relapsed Mantle Cell Lymphoma (MCL) with durable responses seen in 30%-50% of patients. Given that a large proportion of patients will not respond, BZM resistance is a significant barrier to use this agent in MCL. We hypothesized that a subset of aberrantly methylated genes may be modulating BZM response in MCL patients. Genome-wide DNA methylation analysis using a NimbleGen array platform revealed a striking promoter hypomethylation in MCL patient samples following BZM treatment. Pathway analysis of differentially methylated genes identified molecular mechanisms of cancer as a top canonical pathway enriched among hypomethylated genes in BZM treated samples. Noxa, a pro-apoptotic Bcl-2 family member essential for the cytotoxicity of BZM, was significantly hypomethylated and induced following BZM treatment. Therapeutically, we could demethylate Noxa and induce anti-lymphoma activity using BZM and the DNA methytransferase inhibitor Decitabine (DAC) and their combination in vitro and in vivo in BZM resistant MCL cells. These findings suggest a role for dynamic Noxa methylation for the therapeutic benefit of BZM. Potent and synergistic cytotoxicity between BZM and DAC in vitro and in vivo supports a strategy for using epigenetic priming to overcome BZM resistance in relapsed MCL patients.


Assuntos
Bortezomib/farmacologia , Resistencia a Medicamentos Antineoplásicos , Linfoma de Célula do Manto/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Antineoplásicos/farmacologia , Azacitidina/análogos & derivados , Azacitidina/química , Linhagem Celular Tumoral , Sobrevivência Celular , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Metilação de DNA , Decitabina , Epigênese Genética , Feminino , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Inibidores de Proteassoma/química , Reação em Cadeia da Polimerase em Tempo Real , Recidiva
19.
Blood ; 118(17): 4674-81, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21878674

RESUMO

Cooperation of multiple mutations is thought to be required for cancer development. In previous studies, murine myeloid leukemias induced by transducing wild-type bone marrow progenitors with a SRY sex determining region Y-box 4 (Sox4)-expressing retrovirus frequently carried proviral insertions at Sfpi1, decreasing its mRNA levels, suggesting that reduced Sfpi1 expression cooperates with Sox4 in myeloid leukemia induction. In support of this hypothesis, we show here that mice receiving Sox4 virus-infected Sfpi1(ko/+) bone marrow progenitors developed myeloid leukemia with increased penetrance and shortened latency. Interestingly, Sox4 expression further decreased Sfpi1 transcription. Ectopic SOX4 expression reduced endogenous PU.1 mRNA levels in HL60 promyelocytes, and decreased Sfpi1 mRNA levels were also observed in the spleens of leukemic and preleukemic mice receiving Sox4 virus-infected wild-type bone marrow cells. In addition, Sox4 protein bound to a critical upstream regulatory element of Sfpi1 in ChIP assays. Such cooperation probably occurs in de novo human acute myeloid leukemias, as an analysis of 285 acute myeloid leukemia patient samples found a significant negative correlation between SOX4 and PU.1 expression. Our results establish a novel cooperation between Sox4 and reduced Sfpi1 expression in myeloid leukemia development and suggest that SOX4 could be an important new therapeutic target in human acute myeloid leukemia.


Assuntos
Haploinsuficiência/fisiologia , Leucemia Mieloide/genética , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição SOXC/fisiologia , Transativadores/genética , Animais , Transplante de Medula Óssea , Células Cultivadas , Modelos Animais de Doenças , Epistasia Genética/fisiologia , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Células HL-60 , Humanos , Leucemia Mieloide/mortalidade , Leucemia Mieloide/patologia , Leucemia Mieloide/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise em Microsséries , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Transativadores/metabolismo , Transativadores/fisiologia
20.
Semin Cancer Biol ; 21(5): 335-46, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21945517

RESUMO

Mantle cell lymphoma (MCL) is a malignancy of mature B cells characterized by aberrant expression of cyclin D1 due to the translocation t(11;14). Epigenomic and genomic lesions in pathways regulating B-cell activation, cell cycle progression, protein homeostasis, DNA damage response, cell proliferation and apoptosis contribute to its pathogenesis. While patients typically respond to first-line chemotherapy, relapse is the rule resulting in a median survival of 5-7 years. The PI3K/AKT/mTOR appears as a key pathway in the pathogenesis and can be targeted with small molecules. Most experience is with mTOR inhibitors of the rapamycin class. Second-generation mTOR inhibitors and the PI3K inhibitor CAL-101 are novel options to more effectively target this pathway. Bruton's tyrosine kinase inhibition by PCI-32765 has promising activity and indicates immunoreceptor signaling as a novel therapeutic target. Up to 50% of relapsed patients respond to the proteasome inhibitor bortezomib suggesting that MCL may be particularly sensitive to disruption of protein homeostasis and/or induction of oxidative stress. Recent work has focused on elucidating the mechanism of bortezomib-induced cytotoxicity and the development of second-generation proteasome inhibitors. DNA hypomethylating agents and histone deacetylase inhibitors effect epigenetic de-repression of aberrantly silenced genes. These epigenetic pharmaceuticals and HSP90 inhibitors can synergize with proteasome inhibitors. Finally, BH3 mimetics are emerging as tools to sensitize tumor cells to chemotherapy. Participation in clinical trials offers patients a chance to benefit from these advances and is essential to maintain the momentum of progress. Innovative trial designs may be needed to expedite the clinical development of these targeted agents.


Assuntos
Antineoplásicos/uso terapêutico , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/patologia , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos , Humanos , Linfoma de Célula do Manto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA