Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 84(3): 922-934, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34676439

RESUMO

Bifidobacterium bifidum is part of the core microbiota of healthy infant guts where it may form biofilms on epithelial cells, mucosa, and food particles in the gut lumen. Little is known about transcriptional changes in B. bifidum engaged in synergistic multispecies biofilms with ecologically relevant species of the human gut. Recently, we reported prevalence of synergism in mixed-species biofilms formed by the human gut microbiota. This study represents a comparative gene expression analysis of B. bifidum when grown in a single-species biofilm and in two multispecies biofilm consortia with Bifidobacterium longum subsp. infantis, Bacteroides ovatus, and Parabacteroides distasonis in order to identify genes involved in this adaptive process in mixed biofilms and the influence on its metabolic and functional traits. Changes up to 58% and 43% in its genome were found when it grew in three- and four-species biofilm consortia, respectively. Upregulation of genes of B. bifidum involved in carbohydrate metabolism (particularly the galE gene), quorum sensing (luxS and pfs), and amino acid metabolism (especially branched chain amino acids) in both multispecies biofilms, compared to single-species biofilms, suggest that they may be contributing factors for the observed synergistic biofilm production when B. bifidum coexists with other species in a biofilm.


Assuntos
Bifidobacterium bifidum , Microbioma Gastrointestinal , Microbiota , Lactente , Humanos , Bifidobacterium bifidum/metabolismo , Bifidobacterium/genética , Bifidobacterium/metabolismo , Biofilmes
2.
FEMS Microbiol Ecol ; 97(8)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34190973

RESUMO

Bacterial species in the human gut predominantly exist in the form of mixed-species biofilms on mucosal surfaces. In this study, the biofilm-forming ability of many human gut bacterial strains (133 strains recovered from human faeces) on mucin-coated and non-coated polystyrene surfaces was determined. A significant variation (P < 0.05) in the biofilm-forming ability of many bacterial species on both surfaces was noticed. Based on some preliminary trials, four bacterial species were selected (Bifidobacterium bifidum, Bifidobacterium longum subsp. infantis, Parabacteroides distasonis and Bacteroides ovatus), which could not form any abundant biofilm individually under the in vitro conditions investigated, but produced abundant biofilms when co-cultured in different combinations of two, three and four species, giving an evidence of synergistic interactions in multispecies biofilm formation. There was a 4.74-fold increase in the biofilm mass when all strains developed a biofilm together. Strain-specific qPCR analysis showed that B. bifidum was the most dominant species (56%) in the four-species biofilm after 24 h, followed by B. longum subsp. infantis (36.2%). Study involving cell free supernatant of the cooperating strains showed that cell viability as well as physical presence of cooperating cells were prerequisites for the observed synergy in biofilms. The molecular mechanism behind these interactions and subsequent effects on the functionality of the strains involved were not determined in our study but merit further work.


Assuntos
Biofilmes , Microbioma Gastrointestinal , Mucinas , Bacteroides , Bacteroidetes , Bifidobacterium bifidum , Bifidobacterium longum subspecies infantis , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA