Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Plant Cell Environ ; 47(12): 5511-5526, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39219416

RESUMO

Nitrogen (N) nutrition impacts on primary carbon metabolism and can lead to changes in δ13C of respired CO2. However, uncertainty remains as to whether (1) the effect of N nutrition is observed in all species, (2) N source also impacts on respired CO2 in roots and (3) a metabolic model can be constructed to predict δ13C of respired CO2 under different N sources. Here, we carried out isotopic measurements of respired CO2 and various metabolites using two species (spinach, French bean) grown under different NH4 +:NO3 - ratios. Both species showed a similar pattern, with a progressive 13C-depletion in leaf-respired CO2 as the ammonium proportion increased, while δ13C in root-respired CO2 showed little change. Supervised multivariate analysis showed that δ13C of respired CO2 was mostly determined by organic acid (malate, citrate) metabolism, in both leaves and roots. We then took advantage of nonstationary, two-pool modelling that explained 73% of variance in δ13C in respired CO2. It demonstrates the critical role of the balance between the utilisation of respiratory intermediates and the remobilisation of stored organic acids, regardless of anaplerotic bicarbonate fixation by phosphoenolpyruvate carboxylase and the organ considered.


Assuntos
Dióxido de Carbono , Isótopos de Carbono , Nitrogênio , Folhas de Planta , Raízes de Plantas , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Phaseolus/metabolismo , Phaseolus/fisiologia , Malatos/metabolismo , Compostos de Amônio/metabolismo
2.
New Phytol ; 244(1): 21-31, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39021246

RESUMO

Even though they share many thematical overlaps, plant metabolomics and stable isotope ecology have been rather separate fields mainly due to different mass spectrometry demands. New high-resolution bioanalytical mass spectrometers are now not only offering high-throughput metabolite identification but are also suitable for compound- and intramolecular position-specific isotope analysis in the natural isotope abundance range. In plant metabolomics, label-free metabolic pathway and metabolic flux analysis might become possible when applying this new technology. This is because changes in the commitment of substrates to particular metabolic pathways and the activation or deactivation of others alter enzyme-specific isotope effects. This leads to differences in intramolecular and compound-specific isotope compositions. In plant isotope ecology, position-specific isotope analysis in plant archives informed by metabolic pathway analysis could be used to reconstruct and separate environmental impacts on complex metabolic processes. A technology-driven linkage between the two disciplines could allow us to extract information on environment-metabolism interaction from plant archives such as tree rings but also within ecosystems. This would contribute to a holistic understanding of how plants react to environmental drivers, thus also providing helpful information on the trajectories of the vegetation under the conditions to come.


Assuntos
Ecologia , Análise do Fluxo Metabólico , Metabolômica , Plantas , Metabolômica/métodos , Plantas/metabolismo , Análise do Fluxo Metabólico/métodos , Isótopos/metabolismo , Arquivos , Ecossistema , Marcação por Isótopo/métodos
3.
Sci Adv ; 10(28): eadl3591, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38985863

RESUMO

The hydrogen isotopic composition (δ2H) of plant compounds is increasingly used as a hydroclimatic proxy; however, the interpretation of δ2H values is hampered by potential coeffecting biochemical and biophysical processes. Here, we studied δ2H values of water and carbohydrates in leaves and roots, and of leaf n-alkanes, in two distinct tobacco (Nicotiana sylvestris) experiments. Large differences in plant performance and biochemistry resulted from (a) soil fertilization with varying nitrogen (N) species ratios and (b) knockout-induced starch deficiency. We observed a strong 2H-enrichment in sugars and starch with a decreasing performance induced by increasing NO3-/NH4+ ratios and starch deficiency, as well as from leaves to roots. However, δ2H values of cellulose and n-alkanes were less affected. We show that relative concentrations of sugars and starch, interlinked with leaf gas exchange, shape δ2H values of carbohydrates. We thus provide insights into drivers of hydrogen isotopic composition of plant compounds and into the mechanistic modeling of plant cellulose δ2H values.


Assuntos
Carboidratos , Hidrogênio , Folhas de Planta , Folhas de Planta/química , Folhas de Planta/metabolismo , Hidrogênio/análise , Carboidratos/química , Carboidratos/análise , Amido/química , Nicotiana/química , Lipídeos/análise , Lipídeos/química , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Metabolismo dos Carboidratos , Deutério/química , Alcanos/análise , Alcanos/química , Água/química
4.
New Phytol ; 242(3): 960-974, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402527

RESUMO

The link between above- and belowground communities is a key uncertainty in drought and rewetting effects on forest carbon (C) cycle. In young beech model ecosystems and mature naturally dry pine forest exposed to 15-yr-long irrigation, we performed 13C pulse labeling experiments, one during drought and one 2 wk after rewetting, tracing tree assimilates into rhizosphere communities. The 13C pulses applied in tree crowns reached soil microbial communities of the young and mature forests one and 4 d later, respectively. Drought decreased the transfer of labeled assimilates relative to the irrigation treatment. The 13C label in phospholipid fatty acids (PLFAs) indicated greater drought reduction of assimilate incorporation by fungi (-85%) than by gram-positive (-43%) and gram-negative bacteria (-58%). 13C label incorporation was more strongly reduced for PLFAs (cell membrane) than for microbial cytoplasm extracted by chloroform. This suggests that fresh rhizodeposits are predominantly used for osmoregulation or storage under drought, at the expense of new cell formation. Two weeks after rewetting, 13C enrichment in PLFAs was greater in previously dry than in continuously moist soils. Drought and rewetting effects were greater in beech systems than in pine forest. Belowground C allocation and rhizosphere communities are highly resilient to drought.


Assuntos
Pinus , Resiliência Psicológica , Ecossistema , Rizosfera , Resistência à Seca , Solo , Florestas , Carbono/metabolismo , Árvores/fisiologia , Secas , Ácidos Graxos/metabolismo , Fosfolipídeos/metabolismo , Pinus/metabolismo , Microbiologia do Solo
5.
Plant Soil ; 490(1-2): 499-519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780069

RESUMO

Background and aims: Tree species worldwide suffer from extended periods of water limitation. These conditions not only affect the growth and vitality of trees but also feed back on the cycling of carbon (C) at the plant-soil interface. However, the impact of progressing water loss from soils on the transfer of assimilated C belowground remains unresolved. Methods: Using mesocosms, we assessed how increasing levels of water deficit affect the growth of Pinus sylvestris saplings and performed a 13C-CO2 pulse labelling experiment to trace the pathway of assimilated C into needles, fine roots, soil pore CO2, and phospholipid fatty acids of soil microbial groups. Results: With increasing water limitation, trees partitioned more biomass belowground at the expense of aboveground growth. Moderate levels of water limitation barely affected the uptake of 13C label and the transit time of C from needles to the soil pore CO2. Comparatively, more severe water limitation increased the fraction of 13C label that trees allocated to fine roots and soil fungi while a lower fraction of 13CO2 was readily respired from the soil. Conclusions: When soil water becomes largely unavailable, C cycling within trees becomes slower, and a fraction of C allocated belowground may accumulate in fine roots or be transferred to the soil and associated microorganisms without being metabolically used. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-023-06093-5.

6.
Water Res X ; 15: 100130, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35287381

RESUMO

Nitrous oxide (N2O) dominates greenhouse gas emissions in wastewater treatment plants (WWTPs). Formation of N2O occurs during biological nitrogen removal, involves multiple microbial pathways, and is typically very dynamic. Consequently, N2O mitigation strategies require an improved understanding of nitrogen transformation pathways and their modulating controls. Analyses of the nitrogen (N) and oxygen (O) isotopic composition of N2O and its substrates at natural abundance have been shown to provide valuable information on formation and reduction pathways in laboratory settings, but have rarely been applied to full-scale WWTPs. Here we show that N-species isotope ratio measurements at natural abundance level, combined with long-term N2O monitoring, allow identification of the N2O production pathways in a full-scale plug-flow WWTP (Hofen, Switzerland). Heterotrophic denitrification appears as the main N2O production pathway under all tested process conditions (0-2 mgO2/l, high and low loading conditions), while nitrifier denitrification was less important, and more variable. N2O production by hydroxylamine oxidation was not observed. Fractional N2O elimination by reduction to dinitrogen (N2) during anoxic conditions was clearly indicated by a concomitant increase in site preference, δ18O(N2O) and δ15N(N2O). N2O reduction increased with decreasing availability of dissolved inorganic N and organic substrates, which represents the link between diurnal N2O emission dynamics and organic substrate fluctuations. Consequently, dosing ammonium-rich reject water under low-organic-substrate conditions is unfavorable, as it is very likely to cause high net N2O emissions. Our results demonstrate that monitoring of the N2O isotopic composition holds a high potential to disentangle N2O formation mechanisms in engineered systems, such as full-scale WWTP. Our study serves as a starting point for advanced campaigns in the future combining isotopic technologies in WWTP with complementary approaches, such as mathematical modeling of N2O formation or microbial assays to develop efficient N2O mitigation strategies.

7.
J Exp Bot ; 73(8): 2558-2575, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35084456

RESUMO

Stable isotopes at natural abundance are key tools to study physiological processes occurring outside the temporal scope of manipulation and monitoring experiments. Whole-molecule carbon isotope ratios (13C/12C) enable assessments of plant carbon uptake yet conceal information about carbon allocation. Here, we identify an intramolecular 13C/12C signal at tree-ring glucose C-5 and C-6 and develop experimentally testable theories on its origin. More specifically, we assess the potential of processes within C3 metabolism for signal introduction based (inter alia) on constraints on signal propagation posed by metabolic networks. We propose that the intramolecular signal reports carbon allocation into major metabolic pathways in actively photosynthesizing leaf cells including the anaplerotic, shikimate, and non-mevalonate pathway. We support our theoretical framework by linking it to previously reported whole-molecule 13C/12C increases in cellulose of ozone-treated Betula pendula and a highly significant relationship between the intramolecular signal and tropospheric ozone concentration. Our theory postulates a pronounced preference for leaf cytosolic triose-phosphate isomerase to catalyse the forward reaction in vivo (dihydroxyacetone phosphate to glyceraldehyde 3-phosphate). In conclusion, intramolecular 13C/12C analysis resolves information about carbon uptake and allocation enabling more comprehensive assessments of carbon metabolism than whole-molecule 13C/12C analysis.


Assuntos
Plantas , Árvores , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Glucose/metabolismo , Folhas de Planta/metabolismo , Plantas/metabolismo , Árvores/metabolismo
8.
Plant Cell Environ ; 45(1): 12-22, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34564870

RESUMO

The analysis of the non-exchangeable hydrogen isotope ratio (δ2 Hne ) in carbohydrates is mostly limited to the structural component cellulose, while simple high-throughput methods for δ2 Hne values of non-structural carbohydrates (NSC) such as sugar and starch do not yet exist. Here, we tested if the hot vapor equilibration method originally developed for cellulose is applicable for NSC, verified by comparison with the traditional nitration method. We set up a detailed analytical protocol and applied the method to plant extracts of leaves from species with different photosynthetic pathways (i.e., C3 , C4 and CAM). δ2 Hne of commercial sugars and starch from different classes and sources, ranging from -157.8 to +6.4‰, were reproducibly analysed with precision between 0.2‰ and 7.7‰. Mean δ2 Hne values of sugar are lowest in C3 (-92.0‰), intermediate in C4 (-32.5‰) and highest in CAM plants (6.0‰), with NSC being 2 H-depleted compared to cellulose and sugar being generally more 2 H-enriched than starch. Our results suggest that our method can be used in future studies to disentangle 2 H-fractionation processes, for improving mechanistic δ2 Hne models for leaf and tree-ring cellulose and for further development of δ2 Hne in plant carbohydrates as a potential proxy for climate, hydrology, plant metabolism and physiology.


Assuntos
Bioquímica de Carboidratos/métodos , Hidrogênio/análise , Plantas/química , Amido/química , Açúcares/química , Celulose/química , Deutério/análise , Folhas de Planta/química , Vapor , Temperatura
9.
J Exp Bot ; 72(20): 7136-7144, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34223885

RESUMO

Within the plant and Earth sciences, stable isotope analysis is a versatile tool conveying information (inter alia) about plant physiological and paleoclimate variability across scales. Here, we identify a 13C signal (i.e. systematic 13C/12C variation) at tree-ring glucose C-4 and report an experimentally testable theory on its origin. We propose the signal is introduced by glyceraldehyde-3-phosphate dehydrogenases in the cytosol of leaves. It conveys two kinds of (potentially convoluted) information: (i) commitment of glyceraldehyde 3-phosphate to 3-phosphoglycerate versus fructose 1,6-bisphosphate metabolism; and (ii) the contribution of non-phosphorylating versus phosphorylating glyceraldehyde-3-phosphate dehydrogenase to catalysing the glyceraldehyde 3-phosphate to 3-phosphoglycerate forward reaction of glycolysis. The theory is supported by 13C fractionation modelling. Modelling results provide the first evidence in support of the cytosolic oxidation-reduction (COR) cycle, a carbon-neutral mechanism supplying NADPH at the expense of ATP and NADH, which may help to maintain leaf-cytosolic redox balances. In line with expectations related to COR cycling, we found a positive correlation between air vapour pressure deficit and 13C discrimination at glucose C-4. Overall, 13C-4 signal analysis may enable an improved understanding of leaf carbon and energy metabolism.


Assuntos
Glucose , Gliceraldeído-3-Fosfato Desidrogenases , Ciclo do Carbono , Isótopos de Carbono/metabolismo , Citosol/metabolismo , Glucose/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glicólise , Cinética , Folhas de Planta/metabolismo
10.
Glob Chang Biol ; 27(11): 2491-2506, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33739617

RESUMO

Above and belowground compartments in ecosystems are closely coupled on daily to annual timescales. In mature forests, this interlinkage and how it is impacted by drought is still poorly understood. Here, we pulse-labelled 100-year-old trees with 13 CO2 within a 15-year-long irrigation experiment in a naturally dry pine forest to quantify how drought regime affects the transfer and use of assimilates from trees to the rhizosphere and associated microbial communities. It took 4 days until new 13 C-labelled assimilates were allocated to the rhizosphere. One year later, the 13 C signal of the 3-h long pulse labelling was still detectable in stem and soil respiration, which provides evidence that parts of the assimilates are stored in trees before they are used for metabolic processes in the rhizosphere. Irrigation removing the natural water stress reduced the mean C residence time from canopy uptake until soil respiration from 89 to 40 days. Moreover, irrigation increased the amount of assimilates transferred to and respired in the soil within the first 10 days by 370%. A small precipitation event rewetting surface soils altered this pattern rapidly and reduced the effect size to +35%. Microbial biomass incorporated 46 ± 5% and 31 ± 7% of the C used in the rhizosphere in the dry control and irrigation treatment respectively. Mapping the spatial distribution of soil-respired 13 CO2 around the 10 pulse-labelled trees showed that tree rhizospheres extended laterally 2.8 times beyond tree canopies, implying that there is a strong overlap of the rhizosphere among adjacent trees. Irrigation increased the rhizosphere area by 60%, which gives evidence of a long-term acclimation of trees and their rhizosphere to the drought regime. The moisture-sensitive transfer and use of C in the rhizosphere has consequences for C allocation within trees, soil microbial communities and soil carbon storage.


Assuntos
Secas , Árvores , Carbono , Dióxido de Carbono , Pegada de Carbono , Ecossistema , Florestas , Solo
11.
Isotopes Environ Health Stud ; 57(1): 11-34, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32885670

RESUMO

The carbon isotopic composition (δ13C) of foliage is often used as proxy for plant performance. However, the effect of N O 3 - vs. N H 4 + supply on δ13C of leaf metabolites and respired CO2 is largely unknown. We supplied tobacco plants with a gradient of N O 3 - to N H 4 + concentration ratios and determined gas exchange variables, concentrations and δ13C of tricarboxylic acid (TCA) cycle intermediates, δ13C of dark-respired CO2, and activities of key enzymes nitrate reductase, malic enzyme and phosphoenolpyruvate carboxylase. Net assimilation rate, dry biomass and concentrations of organic acids and starch decreased along the gradient. In contrast, respiration rates, concentrations of intercellular CO2, soluble sugars and amino acids increased. As N O 3 - decreased, activities of all measured enzymes decreased. δ13C of CO2 and organic acids closely co-varied and were more positive under N O 3 - supply, suggesting organic acids as potential substrates for respiration. Together with estimates of intra-molecular 13C enrichment in malate, we conclude that a change in the anaplerotic reaction of the TCA cycle possibly contributes to 13C enrichment in organic acids and respired CO2 under N O 3 - supply. Thus, the effect of N O 3 - vs. N H 4 + on δ13C is highly relevant, particularly if δ13C of leaf metabolites or respiration is used as proxy for plant performance.


Assuntos
Compostos de Amônio/farmacologia , Dióxido de Carbono/metabolismo , Nicotiana/metabolismo , Nitratos/farmacologia , Folhas de Planta/metabolismo , Compostos de Amônio/metabolismo , Isótopos de Carbono/análise , Respiração Celular , Malatos/metabolismo , Nitratos/metabolismo , Folhas de Planta/efeitos dos fármacos , Amido/metabolismo , Nicotiana/efeitos dos fármacos
12.
Plant Cell Environ ; 44(7): 2262-2276, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33230869

RESUMO

Plants have evolved to grow under prominently fluctuating environmental conditions. In experiments under controlled conditions, temperature is often set to artificial, binary regimes with constant values at day and at night. This study investigated how such a diel (24 hr) temperature regime affects leaf growth, carbohydrate metabolism and gene expression, compared to a temperature regime with a field-like gradual increase and decline throughout 24 hr. Soybean (Glycine max) was grown under two contrasting diel temperature treatments. Leaf growth was measured in high temporal resolution. Periodical measurements were performed of carbohydrate concentrations, carbon isotopes as well as the transcriptome by RNA sequencing. Leaf growth activity peaked at different times under the two treatments, which cannot be explained intuitively. Under field-like temperature conditions, leaf growth followed temperature and peaked in the afternoon, whereas in the binary temperature regime, growth increased at night and decreased during daytime. Differential gene expression data suggest that a synchronization of cell division activity seems to be evoked in the binary temperature regime. Overall, the results show that the coordination of a wide range of metabolic processes is markedly affected by the diel variation of temperature, which emphasizes the importance of realistic environmental settings in controlled condition experiments.


Assuntos
Glycine max/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Metabolismo dos Carboidratos , Isótopos de Carbono/análise , Relógios Circadianos/genética , Regulação da Expressão Gênica de Plantas , Células Vegetais , Folhas de Planta/citologia , Proteínas de Plantas/genética , Glycine max/citologia , Amido/metabolismo , Açúcares/metabolismo , Suíça , Temperatura , Pressão de Vapor
13.
Proc Natl Acad Sci U S A ; 117(40): 24885-24892, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958662

RESUMO

Drought alters carbon (C) allocation within trees, thereby impairing tree growth. Recovery of root and leaf functioning and prioritized C supply to sink tissues after drought may compensate for drought-induced reduction of assimilation and growth. It remains unclear if C allocation to sink tissues during and following drought is controlled by altered sink metabolic activities or by the availability of new assimilates. Understanding such mechanisms is required to predict forests' resilience to a changing climate. We investigated the impact of drought and drought release on C allocation in a 100-y-old Scots pine forest. We applied 13CO2 pulse labeling to naturally dry control and long-term irrigated trees and tracked the fate of the label in above- and belowground C pools and fluxes. Allocation of new assimilates belowground was ca. 53% lower under nonirrigated conditions. A short rainfall event, which led to a temporary increase in the soil water content (SWC) in the topsoil, strongly increased the amounts of C transported belowground in the nonirrigated plots to values comparable to those in the irrigated plots. This switch in allocation patterns was congruent with a tipping point at around 15% SWC in the response of the respiratory activity of soil microbes. These results indicate that the metabolic sink activity in the rhizosphere and its modulation by soil moisture can drive C allocation within adult trees and ecosystems. Even a subtle increase in soil moisture can lead to a rapid recovery of belowground functions that in turn affects the direction of C transport in trees.


Assuntos
Carbono/metabolismo , Pinus sylvestris/metabolismo , Solo/química , Árvores/metabolismo , Carbono/análise , Mudança Climática , Secas , Ecossistema , Florestas , Pinus sylvestris/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Rizosfera , Árvores/crescimento & desenvolvimento , Água/análise , Água/metabolismo
14.
Rapid Commun Mass Spectrom ; 34(19): e8854, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32511807

RESUMO

RATIONALE: The oxygen isotopic composition (here shown as the δ18 O value) of soluble sugars in leaves and phloem tissue holds valuable information about plant functions in response to climatic changes. However, δ18 O analysis of sugars is prone to error, and thoroughly tested methods are lacking. METHODS: We performed three experiments to test if sample preparation modifies the δ18 O values of sugars. In experiment 1, we tested the effects of oven-drying versus freeze-drying, whereas in experiment 2 we focused on the extraction and purification of leaf sugars. In experiment 3, we investigated the exudation and purification of twig phloem sugars as a function of exudation time and different ethylenediaminetetraacetic acid (EDTA) exudation media. RESULTS: Freeze-drying produced more consistent δ18 O values than oven-drying for sucrose but not for phloem sugars. The extraction and purification of leaf sugars can be performed without a significant modification of their δ18 O values; yet the purified leaf and phloem sugars possessed higher δ18 O values than the fraction of water-soluble compounds. Moreover, the exudation time significantly modulated the δ18 O values of phloem sugars, which is probably related to changes in the sugar composition. The addition of EDTA did not improve the determination of the δ18 O values of phloem sugars. CONCLUSIONS: We show that the sample preparation of plant sugars for the reliable determination of δ18 O values requires a strict protocol, which is described in this paper. For phloem sugar, we recommend a maximum exudation time of 1 h to reduce the degradation of sucrose and minimise oxygen isotope exchange reactions between the resulting hexoses and water.


Assuntos
Técnicas de Química Analítica/métodos , Isótopos de Oxigênio/análise , Floema/química , Folhas de Planta/química , Açúcares/isolamento & purificação , Ácido Edético , Açúcares/análise , Açúcares/química
15.
Oecologia ; 191(2): 389-396, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31435756

RESUMO

Habitats with fluctuating resource conditions pose specific challenges to plants, and they often favor a small subset of species that includes exotic invaders. These species must possess a superior ability to capitalize on resource pulses through faster resource uptake or greater resource-use efficiency. We addressed this question in an experiment with invasive knotweed, a noxious invader of temperate ecosystems that is known to benefit from nutrient fluctuations. We used stable isotopes to track the uptake and use efficiency of a nitrogen pulse in competition pairs between knotweed and five native competitors. We found that nitrogen pulses indeed promoted knotweed invasion and that this is explained by a superior efficiency in turning the taken-up extra nitrogen into biomass, rather than capturing an overproportional share of the nitrogen. Thus, temporary increases in nutrient availability might help knotweed to invade natural environments, such as river banks or nitrogen-polluted margins and wastelands, where nutrient fluctuations occur. Our experiment shows that resource-use efficiency can drive invasion under fluctuating resource conditions, and that stable isotopes help to understand these processes.


Assuntos
Nitrogênio , Polygonum , Biomassa , Ecossistema , Plantas
16.
Rapid Commun Mass Spectrom ; 33(13): 1153-1163, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30942511

RESUMO

RATIONALE: Oversaturation of the Faraday cup amplifiers of isotope ratio mass spectrometers when using tracers that are highly enriched in heavier isotopes (up to 99.9%) remains a major bottleneck to obtaining high-precision measurements. The memory effect plays a key role in reducing tracer sample measurement precision and accuracy. Several sample preparation approaches are known to reduce memory effects and to improve tracer sample measurement precision. However, the potential benefits when using very high enrichment tracer samples (> +1000 mUr) have not been tested. METHODS: In this study, we test how specific sample positioning for measurements and frequent use of natural isotope abundance reference materials within the sequence affects the precision and accuracy of isotopic ratio analyses when using a Flash elemental analyser coupled to a Deltaplus XP isotope ratio mass spectrometer for very high enrichment (> +22000 mUr) 15 N tracer sample measurements. Furthermore, we investigate if tracer sample dilution with natural isotope abundance materials reduces memory effects and increases measurement precision and accuracy when measurements of high-enrichment 15 N and 13 C biomass tracer samples are conducted. RESULTS: Frequent use of natural isotope abundance materials and specific positioning increased 15 N tracer sample precision, but it had a negative effect on the precision of quality control substances. 15 N and 13 C tracer sample dilution improved measurement precision by a maximum of ±0.9 mUr; however, a strong linear relationship between the original and the calculated φ values was found. Highly enriched 15 N tracer samples caused a maximum memory effect of 0.11%. High levels of 15 N abundance within the samples affected measurement accuracy by an average of 6.7%. CONCLUSIONS: We conclude that highly enriched tracer samples do not require dilution before analysis. Tracer sample precision can be improved by using a specific measurement order of expected isotope abundance and by the frequent use of natural abundance reference materials.

17.
Viruses ; 11(2)2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30744065

RESUMO

Dendritic cells (DCs) express Fcγ receptors (FcγRs) for the binding immune complexes (ICs) consisting of IgG and antigens (Ags). IC⁻FcγR interactions have been demonstrated to enhance activation and antigen-presenting functions of DCs. Utilizing Friend virus (FV), an oncogenic mouse retrovirus, we investigated the effect of IgG-opsonization of retroviral particles on the infection of DCs and the subsequent presentation of viral antigens by DCs to virus-specific CD8 T cells. We found that opsonization by virus-specific non-neutralizing IgG abrogated DC infection and as a consequence significantly reduced the capacity of DCs to activate virus-specific CD8 T cells. Effects of IgG-opsonization were mediated by the high-affinity FcγR type I, CD64, expressed on DCs. Our results suggest that different opsonization patterns on the retroviral surface modulate infection and antigen-presenting functions of DCs, whereby, in contrast to complement, IgG reduces the capacity of DCs to activate cytotoxic T cell (CTL) responses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Vírus da Leucemia Murina de Friend/imunologia , Ativação Linfocitária , Receptores de IgG/imunologia , Animais , Apresentação de Antígeno , Complexo Antígeno-Anticorpo/imunologia , Células Dendríticas/virologia , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de IgG/genética
18.
J Exp Bot ; 70(6): 1829-1841, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30785201

RESUMO

Carbon isotope (13C) fractionations occurring during and after photosynthetic CO2 fixation shape the carbon isotope composition (δ13C) of plant material and respired CO2. However, responses of 13C fractionations to diel variation in starch metabolism in the leaf are not fully understood. Here we measured δ13C of organic matter (δ13COM), concentrations and δ13C of potential respiratory substrates, δ13C of dark-respired CO2 (δ13CR), and gas exchange in leaves of starch-deficient plastidial phosphoglucomutase (pgm) mutants and wild-type plants of four species (Arabidopsis thaliana, Mesembryanthemum crystallinum, Nicotiana sylvestris, and Pisum sativum). The strongest δ13C response to the pgm-induced starch deficiency was observed in N. sylvestris, with more negative δ13COM, δ13CR, and δ13C values for assimilates (i.e. sugars and starch) and organic acids (i.e. malate and citrate) in pgm mutants than in wild-type plants during a diel cycle. The genotype differences in δ13C values could be largely explained by differences in leaf gas exchange. In contrast, the PGM-knockout effect on post-photosynthetic 13C fractionations via the plastidic fructose-1,6-bisphosphate aldolase reaction or during respiration was small. Taken together, our results show that the δ13C variations in starch-deficient mutants are primarily explained by photosynthetic 13C fractionations and that the combination of knockout mutants and isotope analyses allows additional insights into plant metabolism.


Assuntos
Isótopos de Carbono/metabolismo , Fotossíntese , Amido/deficiência , Traqueófitas/metabolismo , Arabidopsis/metabolismo , Mesembryanthemum/metabolismo , Pisum sativum/metabolismo , Nicotiana/metabolismo
19.
New Phytol ; 218(2): 479-491, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29460486

RESUMO

Hydrogen (H) isotope ratio (δ2 H) analyses of plant organic compounds have been applied to assess ecohydrological processes in the environment despite a large part of the δ2 H variability observed in plant compounds not being fully elucidated. We present a conceptual biochemical model based on empirical H isotope data that we generated in two complementary experiments that clarifies a large part of the unexplained variability in the δ2 H values of plant organic compounds. The experiments demonstrate that information recorded in the δ2 H values of plant organic compounds goes beyond hydrological signals and can also contain important information on the carbon and energy metabolism of plants. Our model explains where 2 H-fractionations occur in the biosynthesis of plant organic compounds and how these 2 H-fractionations are tightly coupled to a plant's carbon and energy metabolism. Our model also provides a mechanistic basis to introduce H isotopes in plant organic compounds as a new metabolic proxy for the carbon and energy metabolism of plants and ecosystems. Such a new metabolic proxy has the potential to be applied in a broad range of disciplines, including plant and ecosystem physiology, biogeochemistry and palaeoecology.


Assuntos
Carboidratos/biossíntese , Fracionamento Químico/métodos , Deutério/metabolismo , Lipídeos/biossíntese , Compostos Orgânicos/metabolismo , Plantas/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Respiração Celular , Hidrogênio/metabolismo , Fotossíntese , Folhas de Planta/metabolismo
20.
Am J Hum Genet ; 99(5): 1005-1014, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27745832

RESUMO

Periodontal Ehlers-Danlos syndrome (pEDS) is an autosomal-dominant disorder characterized by early-onset periodontitis leading to premature loss of teeth, joint hypermobility, and mild skin findings. A locus was mapped to an approximately 5.8 Mb region at 12p13.1 but no candidate gene was identified. In an international consortium we recruited 19 independent families comprising 107 individuals with pEDS to identify the locus, characterize the clinical details in those with defined genetic causes, and try to understand the physiological basis of the condition. In 17 of these families, we identified heterozygous missense or in-frame insertion/deletion mutations in C1R (15 families) or C1S (2 families), contiguous genes in the mapped locus that encode subunits C1r and C1s of the first component of the classical complement pathway. These two proteins form a heterotetramer that then combines with six C1q subunits. Pathogenic variants involve the subunit interfaces or inter-domain hinges of C1r and C1s and are associated with intracellular retention and mild endoplasmic reticulum enlargement. Clinical features of affected individuals in these families include rapidly progressing periodontitis with onset in the teens or childhood, a previously unrecognized lack of attached gingiva, pretibial hyperpigmentation, skin and vascular fragility, easy bruising, and variable musculoskeletal symptoms. Our findings open a connection between the inflammatory classical complement pathway and connective tissue homeostasis.


Assuntos
Complemento C1r/genética , Complemento C1s/genética , Síndrome de Ehlers-Danlos/genética , Deleção de Genes , Mutação de Sentido Incorreto , Periodontite/genética , Adolescente , Adulto , Criança , Pré-Escolar , Mapeamento Cromossômico , Cromossomos Humanos Par 12/genética , Síndrome de Ehlers-Danlos/diagnóstico , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Exoma , Feminino , Loci Gênicos , Humanos , Masculino , Linhagem , Periodontite/diagnóstico , Conformação Proteica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA