Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Cell Biol ; 26(4): 552-566, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561547

RESUMO

Metabolic crosstalk of the major nutrients glucose, amino acids and fatty acids (FAs) ensures systemic metabolic homeostasis. The coordination between the supply of glucose and FAs to meet various physiological demands is especially important as improper nutrient levels lead to metabolic disorders, such as diabetes and metabolic dysfunction-associated steatohepatitis (MASH). In response to the oscillations in blood glucose levels, lipolysis is thought to be mainly regulated hormonally to control FA liberation from lipid droplets by insulin, catecholamine and glucagon. However, whether general cell-intrinsic mechanisms exist to directly modulate lipolysis via glucose sensing remains largely unknown. Here we report the identification of such an intrinsic mechanism, which involves Golgi PtdIns4P-mediated regulation of adipose triglyceride lipase (ATGL)-driven lipolysis via intracellular glucose sensing. Mechanistically, depletion of intracellular glucose results in lower Golgi PtdIns4P levels, and thus reduced assembly of the E3 ligase complex CUL7FBXW8 in the Golgi apparatus. Decreased levels of the E3 ligase complex lead to reduced polyubiquitylation of ATGL in the Golgi and enhancement of ATGL-driven lipolysis. This cell-intrinsic mechanism regulates both the pool of intracellular FAs and their extracellular release to meet physiological demands during fasting and glucose deprivation. Moreover, genetic and pharmacological manipulation of the Golgi PtdIns4P-CUL7FBXW8-ATGL axis in mouse models of simple hepatic steatosis and MASH, as well as during ex vivo perfusion of a human steatotic liver graft leads to the amelioration of steatosis, suggesting that this pathway might be a promising target for metabolic dysfunction-associated steatotic liver disease and possibly MASH.


Assuntos
Glicemia , Lipólise , Fosfatos de Fosfatidilinositol , Animais , Humanos , Camundongos , Ácidos Graxos/metabolismo , Glucose , Lipase/genética , Lipase/metabolismo , Lipólise/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139061

RESUMO

Our study explored the impact of hypergravity on human T cells, which experience additional acceleration forces beyond Earth's gravity due to various factors, such as pulsatile blood flow, and technology, such as high-performance aircraft flights or spaceflights. We investigated the histone modifications Histone 3 lysine 4 and 9 trimethylation (H3K4me3 and H3K9me3, respectively), as well as the structural and cytoskeletal organization of Jurkat T cells in response to hypergravity. Histone modifications play a crucial role in gene regulation, chromatin organization and DNA repair. In response to hypergravity, we found only minimal changes of H3K4me3 and a rapid increase in H3K9me3, which was sustained for up to 15 min and then returned to control levels after 1 h. Furthermore, rapid changes in F-actin fluorescence were observed within seconds of hypergravity exposure, indicating filament depolymerization and cytoskeletal restructuring, which subsequently recovered after 1 h of hypergravity. Our study demonstrated the rapid, dynamic and adaptive cellular response to hypergravity, particularly in terms of histone modifications and cytoskeletal changes. These responses are likely necessary for maintaining genome stability and structural integrity under hypergravity conditions as they are constantly occurring in the human body during blood cell circulation.


Assuntos
Hipergravidade , Voo Espacial , Humanos , Actinas , Citoesqueleto de Actina , Citoesqueleto
3.
Ann Surg ; 278(5): 669-675, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37497663

RESUMO

OBJECTIVE: To develop a protocol for the defatting of steatotic liver grafts during long-term ex situ normothermic machine perfusion. BACKGROUND: Despite the alarming increase in donor organ shortage, the highly prevalent fatty liver grafts are often discarded due to the risk of primary nonfunction. Effective strategies preventing such outcomes are currently lacking. An exciting new avenue is the introduction of ex situ normothermic machine perfusion (NMP), enabling a liver to remain fully functional for up to 2 weeks and providing a unique window of opportunity for defatting before transplantation. METHODS: Over a 5-year period, 23 discarded liver grafts and 28 partial livers from our resection program were tested during ex situ normothermic machine perfusion. The steatosis degree was determined on serial biopsies by expert pathologists, and triglyceride contents were measured simultaneously. RESULTS: Of 51 liver grafts, 20 were steatotic, with up to 85% macrovesicular steatosis, and were perfused for up to 12 days. Ten livers displayed marked (5 of which almost complete) loss of fat, while the other 10 did not respond to long-term perfusion. Successful defatting was related to prolonged perfusion, automated glucose control, circadian nutrition, and L-carnitine/fenofibrate supplementation. Pseudopeliotic steatosis and the associated activation of Kupffer/stellate cells were unexpected processes that might contribute to defatting. Synthetic and metabolic functions remained preserved for most grafts until perfusion ended. CONCLUSION: Ex situ long-term perfusion effectively reduces steatosis while preserving organ viability and may in the future allow transplantation of primarily unusable high-risk grafts, significantly increasing the number of organs available for transplantation.


Assuntos
Fígado Gorduroso , Transplante de Fígado , Humanos , Preservação de Órgãos/métodos , Fígado/patologia , Transplante de Fígado/métodos , Perfusão/métodos
4.
Dev Dyn ; 252(9): 1180-1188, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37212424

RESUMO

BACKGROUND: Tendons and ligaments attach to bone are essential for joint mobility and stability in vertebrates. Tendon and ligament attachments (ie, entheses) are found at bony protrusions (ie, eminences), and the shape and size of these protrusions depend on both mechanical forces and cellular cues during growth. Tendon eminences also contribute to mechanical leverage for skeletal muscle. Fibroblast growth factor receptor (FGFR) signaling plays a critical role in bone development, and Fgfr1 and Fgfr2 are highly expressed in the perichondrium and periosteum of bone where entheses can be found. RESULTS AND CONCLUSIONS: We used transgenic mice for combinatorial knockout of Fgfr1 and/or Fgfr2 in tendon/attachment progenitors (ScxCre) and measured eminence size and shape. Conditional deletion of both, but not individual, Fgfr1 and Fgfr2 in Scx progenitors led to enlarged eminences in the postnatal skeleton and shortening of long bones. In addition, Fgfr1/Fgfr2 double conditional knockout mice had more variation collagen fibril size in tendon, decreased tibial slope, and increased cell death at ligament attachments. These findings identify a role for FGFR signaling in regulating growth and maintenance of tendon/ligament attachments and the size and shape of bony eminences.


Assuntos
Osso e Ossos , Tendões , Animais , Camundongos , Morte Celular/genética , Camundongos Knockout , Camundongos Transgênicos , Células-Tronco , Tendões/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA