Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Syst Biol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712512

RESUMO

Phylogenetic and discrete-trait evolutionary inference depend heavily on an appropriate characterization of the underlying character substitution process. In this paper, we present random-effects substitution models that extend common continuous-time Markov chain models into a richer class of processes capable of capturing a wider variety of substitution dynamics. As these random-effects substitution models often require many more parameters than their usual counterparts, inference can be both statistically and computationally challenging. Thus, we also propose an efficient approach to compute an approximation to the gradient of the data likelihood with respect to all unknown substitution model parameters. We demonstrate that this approximate gradient enables scaling of sampling-based inference, namely Bayesian inference via Hamiltonian Monte Carlo, under random-effects substitution models across large trees and state-spaces. Applied to a dataset of 583 SARS-CoV-2 sequences, an HKY model with random-effects shows strong signals of nonreversibility in the substitution process, and posterior predictive model checks clearly show that it is a more adequate model than a reversible model. When analyzing the pattern of phylogeographic spread of 1441 influenza A virus (H3N2) sequences between 14 regions, a random-effects phylogeographic substitution model infers that air travel volume adequately predicts almost all dispersal rates. A random-effects state-dependent substitution model reveals no evidence for an effect of arboreality on the swimming mode in the tree frog subfamily Hylinae. Simulations reveal that random-effects substitution models can accommodate both negligible and radical departures from the underlying base substitution model. We show that our gradient-based inference approach is over an order of magnitude more time efficient than conventional approaches.

2.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559140

RESUMO

Molecular surveillance of viral pathogens and inference of transmission networks from genomic data play an increasingly important role in public health efforts, especially for HIV-1. For many methods, the genetic distance threshold used to connect sequences in the transmission network is a key parameter informing the properties of inferred networks. Using a distance threshold that is too high can result in a network with many spurious links, making it difficult to interpret. Conversely, a distance threshold that is too low can result in a network with too few links, which may not capture key insights into clusters of public health concern. Published research using the HIV-TRACE software package frequently uses the default threshold of 0.015 substitutions/site for HIV pol gene sequences, but in many cases, investigators heuristically select other threshold parameters to better capture the underlying dynamics of the epidemic they are studying. Here, we present a general heuristic scoring approach for tuning a distance threshold adaptively, which seeks to prevent the formation of giant clusters. We prioritize the ratio of the sizes of the largest and the second largest cluster, maximizing the number of clusters present in the network. We apply our scoring heuristic to outbreaks with different characteristics, such as regional or temporal variability, and demonstrate the utility of using the scoring mechanism's suggested distance threshold to identify clusters exhibiting risk factors that would have otherwise been more difficult to identify. For example, while we found that a 0.015 substitutions/site distance threshold is typical for US-like epidemics, recent outbreaks like the CRF07_BC subtype among men who have sex with men (MSM) in China have been found to have a lower optimal threshold of 0.005 to better capture the transition from injected drug use (IDU) to MSM as the primary risk factor. Alternatively, in communities surrounding Lake Victoria in Uganda, where there has been sustained hetero-sexual transmission for many years, we found that a larger distance threshold is necessary to capture a more risk factor-diverse population with sparse sampling over a longer period of time. Such identification may allow for more informed intervention action by respective public health officials.

3.
Clin Infect Dis ; 78(5): 1204-1213, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38227643

RESUMO

BACKGROUND: Infection prevention (IP) measures are designed to mitigate the transmission of pathogens in healthcare. Using large-scale viral genomic and social network analyses, we determined if IP measures used during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic were adequate in protecting healthcare workers (HCWs) and patients from acquiring SARS-CoV-2. METHODS: We performed retrospective cross-sectional analyses of viral genomics from all available SARS-CoV-2 viral samples collected at UC San Diego Health and social network analysis using the electronic medical record to derive temporospatial overlap of infections among related viromes and supplemented with contact tracing data. The outcome measure was any instance of healthcare transmission, defined as cases with closely related viral genomes and epidemiological connection within the healthcare setting during the infection window. Between November 2020 through January 2022, 12 933 viral genomes were obtained from 35 666 patients and HCWs. RESULTS: Among 5112 SARS-CoV-2 viral samples sequenced from the second and third waves of SARS-CoV-2 (pre-Omicron), 291 pairs were derived from persons with a plausible healthcare overlap. Of these, 34 pairs (12%) were phylogenetically linked: 19 attributable to household and 14 to healthcare transmission. During the Omicron wave, 2106 contact pairs among 7821 sequences resulted in 120 (6%) related pairs among 32 clusters, of which 10 were consistent with healthcare transmission. Transmission was more likely to occur in shared spaces in the older hospital compared with the newer hospital (2.54 vs 0.63 transmission events per 1000 admissions, P < .001). CONCLUSIONS: IP strategies were effective at identifying and preventing healthcare SARS-CoV-2 transmission.


Assuntos
COVID-19 , Genoma Viral , Pessoal de Saúde , SARS-CoV-2 , Humanos , COVID-19/transmissão , COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/genética , Estudos Retrospectivos , Estudos Transversais , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Análise de Rede Social , Busca de Comunicante , Genômica , Adulto Jovem , Adolescente , Criança , Idoso de 80 Anos ou mais , Infecção Hospitalar/transmissão , Infecção Hospitalar/virologia , Infecção Hospitalar/epidemiologia , Pré-Escolar
4.
AIDS ; 38(2): 245-254, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890471

RESUMO

OBJECTIVES: This study investigates primary peer-referral engagement (PRE) strategies to assess which strategy results in engaging higher numbers of people with HIV (PWH) who are virally unsuppressed. DESIGN: We develop a modeling study that simulates an HIV epidemic (transmission, disease progression, and viral evolution) over 6 years using an agent-based model followed by simulating PRE strategies. We investigate two PRE strategies where referrals are based on social network strategies (SNS) or sexual partner contact tracing (SPCT). METHODS: We parameterize, calibrate, and validate our study using data from Chicago on Black sexual minority men to assess these strategies for a population with high incidence and prevalence of HIV. For each strategy, we calculate the number of PWH recruited who are undiagnosed or out-of-care (OoC) and the number of direct or indirect transmissions. RESULTS: SNS and SPCT identified 256.5 [95% confidence interval (CI) 234-279] and 15 (95% CI 7-27) PWH, respectively. Of these, SNS identified 159 (95% CI 142-177) PWH OoC and 32 (95% CI 21-43) PWH undiagnosed compared with 9 (95% CI 3-18) and 2 (95% CI 0-5) for SPCT. SNS identified 15.5 (95% CI 6-25) and 7.5 (95% CI 2-11) indirect and direct transmission pairs, whereas SPCT identified 6 (95% CI 0-8) and 5 (95% CI 0-8), respectively. CONCLUSION: With no testing constraints, SNS is the more effective strategy to identify undiagnosed and OoC PWH. Neither strategy is successful at identifying sufficient indirect or direct transmission pairs to investigate transmission networks.


Assuntos
Infecções por HIV , Minorias Sexuais e de Gênero , Masculino , Humanos , Infecções por HIV/epidemiologia , Parceiros Sexuais , Rede Social , Busca de Comunicante
5.
Virus Evol ; 9(2): vead069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046219

RESUMO

Large datasets along with sampling bias represent a challenge for phylodynamic reconstructions, particularly when the study data are obtained from various heterogeneous sources and/or through convenience sampling. In this study, we evaluate the presence of unbalanced sampled distribution by collection date, location, and risk group of human immunodeficiency virus Type 1 Subtype C using a comprehensive subsampling strategy and assess their impact on the reconstruction of the viral spatial and risk group dynamics using phylogenetic comparative methods. Our study shows that a most suitable dataset for ancestral trait reconstruction can be obtained through subsampling by all available traits, particularly using multigene datasets. We also demonstrate that sampling bias is inflated when considerable information for a given trait is unavailable or of poor quality, as we observed for the trait risk group. In conclusion, we suggest that, even if traits are not well recorded, including them deliberately optimizes the representativeness of the original dataset rather than completely excluding them. Therefore, we advise the inclusion of as many traits as possible with the aid of subsampling approaches in order to optimize the dataset for phylodynamic analysis while reducing the computational burden. This will benefit research communities investigating the evolutionary and spatio-temporal patterns of infectious diseases.

6.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37745602

RESUMO

Zoonotic spillovers of viruses have occurred through the animal trade worldwide. The start of the COVID-19 pandemic was traced epidemiologically to the Huanan Wholesale Seafood Market, the site with the most reported wildlife vendors in the city of Wuhan, China. Here, we analyze publicly available qPCR and sequencing data from environmental samples collected in the Huanan market in early 2020. We demonstrate that the SARS-CoV-2 genetic diversity linked to this market is consistent with market emergence, and find increased SARS-CoV-2 positivity near and within a particular wildlife stall. We identify wildlife DNA in all SARS-CoV-2 positive samples from this stall. This includes species such as civets, bamboo rats, porcupines, hedgehogs, and one species, raccoon dogs, known to be capable of SARS-CoV-2 transmission. We also detect other animal viruses that infect raccoon dogs, civets, and bamboo rats. Combining metagenomic and phylogenetic approaches, we recover genotypes of market animals and compare them to those from other markets. This analysis provides the genetic basis for a short list of potential intermediate hosts of SARS-CoV-2 to prioritize for retrospective serological testing and viral sampling.

7.
PLoS Med ; 20(9): e1004293, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37738247

RESUMO

• Human immunodeficiency virus (HIV) drug resistance has implications for antiretroviral treatment strategies and for containing the HIV pandemic because the development of HIV drug resistance leads to the requirement for antiretroviral drugs that may be less effective, less well-tolerated, and more expensive than those used in first-line regimens. • HIV drug resistance studies are designed to determine which HIV mutations are selected by antiretroviral drugs and, in turn, how these mutations affect antiretroviral drug susceptibility and response to future antiretroviral treatment regimens. • Such studies collectively form a vital knowledge base essential for monitoring global HIV drug resistance trends, interpreting HIV genotypic tests, and updating HIV treatment guidelines. • Although HIV drug resistance data are collected in many studies, such data are often not publicly shared, prompting the need to recommend best practices to encourage and standardize HIV drug resistance data sharing. • In contrast to other viruses, sharing HIV sequences from phylogenetic studies of transmission dynamics requires additional precautions as HIV transmission is criminalized in many countries and regions. • Our recommendations are designed to ensure that the data that contribute to HIV drug resistance knowledge will be available without undue hardship to those publishing HIV drug resistance studies and without risk to people living with HIV.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Filogenia , HIV-1/genética , Farmacorresistência Viral/genética , Antirretrovirais/uso terapêutico , Mutação , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico
8.
BMC Infect Dis ; 23(1): 446, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400776

RESUMO

BACKGROUND: Due to practical challenges associated with genetic sequencing in low-resource environments, the burden of hepatitis C virus (HCV) in forcibly displaced people is understudied. We examined the use of field applicable HCV sequencing methods and phylogenetic analysis to determine HCV transmission dynamics in internally displaced people who inject drugs (IDPWID) in Ukraine. METHODS: In this cross-sectional study, we used modified respondent-driven sampling to recruit IDPWID who were displaced to Odesa, Ukraine, before 2020. We generated partial and near full length genome (NFLG) HCV sequences using Oxford Nanopore Technology (ONT) MinION in a simulated field environment. Maximum likelihood and Bayesian methods were used to establish phylodynamic relationships. RESULTS: Between June and September 2020, we collected epidemiological data and whole blood samples from 164 IDPWID (PNAS Nexus.2023;2(3):pgad008). Rapid testing (Wondfo® One Step HCV; Wondfo® One Step HIV1/2) identified an anti-HCV seroprevalence of 67.7%, and 31.1% of participants tested positive for both anti-HCV and HIV. We generated 57 partial or NFLG HCV sequences and identified eight transmission clusters, of which at least two originated within a year and a half post-displacement. CONCLUSIONS: Locally generated genomic data and phylogenetic analysis in rapidly changing low-resource environments, such as those faced by forcibly displaced people, can help inform effective public health strategies. For example, evidence of HCV transmission clusters originating soon after displacement highlights the importance of implementing urgent preventive interventions in ongoing situations of forced displacement.


Assuntos
Infecções por HIV , Hepatite C , Abuso de Substâncias por Via Intravenosa , Humanos , Hepacivirus/genética , Ucrânia/epidemiologia , Estudos Transversais , Filogenia , Estudos Soroepidemiológicos , Teorema de Bayes , Infecções por HIV/complicações , Abuso de Substâncias por Via Intravenosa/complicações , Abuso de Substâncias por Via Intravenosa/epidemiologia , Prevalência
9.
bioRxiv ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37502985

RESUMO

The emergence of SARS-CoV in 2002 and SARS-CoV-2 in 2019 has led to increased sampling of related sarbecoviruses circulating primarily in horseshoe bats. These viruses undergo frequent recombination and exhibit spatial structuring across Asia. Employing recombination-aware phylogenetic inference on bat sarbecoviruses, we find that the closest-inferred bat virus ancestors of SARS-CoV and SARS-CoV-2 existed just ~1-3 years prior to their emergence in humans. Phylogeographic analyses examining the movement of related sarbecoviruses demonstrate that they traveled at similar rates to their horseshoe bat hosts and have been circulating for thousands of years in Asia. The closest-inferred bat virus ancestor of SARS-CoV likely circulated in western China, and that of SARS-CoV-2 likely circulated in a region comprising southwest China and northern Laos, both a substantial distance from where they emerged. This distance and recency indicate that the direct ancestors of SARS-CoV and SARS-CoV-2 could not have reached their respective sites of emergence via the bat reservoir alone. Our recombination-aware dating and phylogeographic analyses reveal a more accurate inference of evolutionary history than performing only whole-genome or single gene analyses. These results can guide future sampling efforts and demonstrate that viral genomic fragments extremely closely related to SARS-CoV and SARS-CoV-2 were circulating in horseshoe bats, confirming their importance as the reservoir species for SARS viruses.

10.
PNAS Nexus ; 2(3): pgad008, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36896134

RESUMO

Internally displaced persons are often excluded from HIV molecular epidemiology surveillance due to structural, behavioral, and social barriers in access to treatment. We test a field-based molecular epidemiology framework to study HIV transmission dynamics in a hard-to-reach and highly stigmatized group, internally displaced people who inject drugs (IDPWIDs). We inform the framework by Nanopore generated HIV pol sequences and IDPWID migration history. In June-September 2020, we recruited 164 IDPWID in Odesa, Ukraine, and obtained 34 HIV sequences from HIV-infected participants. We aligned them to publicly available sequences (N = 359) from Odesa and IDPWID regions of origin and identified 7 phylogenetic clusters with at least 1 IDPWID. Using times to the most recent common ancestors of the identified clusters and times of IDPWID relocation to Odesa, we infer potential post-displacement transmission window when infections likely to happen to be between 10 and 21 months, not exceeding 4 years. Phylogeographic analysis of the sequence data shows that local people in Odesa disproportionally transmit HIV to the IDPWID community. Rapid transmissions post-displacement in the IDPWID community might be associated with slow progression along the HIV continuum of care: only 63% of IDPWID were aware of their status, 40% of those were in antiviral treatment, and 43% of those were virally suppressed. Such HIV molecular epidemiology investigations are feasible in transient and hard-to-reach communities and can help indicate best times for HIV preventive interventions. Our findings highlight the need to rapidly integrate Ukrainian IDPWID into prevention and treatment services following the dramatic escalation of the war in 2022.

11.
ArXiv ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36994154

RESUMO

Phylogenetic and discrete-trait evolutionary inference depend heavily on an appropriate characterization of the underlying character substitution process. In this paper, we present random-effects substitution models that extend common continuous-time Markov chain models into a richer class of processes capable of capturing a wider variety of substitution dynamics. As these random-effects substitution models often require many more parameters than their usual counterparts, inference can be both statistically and computationally challenging. Thus, we also propose an efficient approach to compute an approximation to the gradient of the data likelihood with respect to all unknown substitution model parameters. We demonstrate that this approximate gradient enables scaling of sampling-based inference, namely Bayesian inference via Hamiltonian Monte Carlo, under random-effects substitution models across large trees and state-spaces. Applied to a dataset of 583 SARS-CoV-2 sequences, an HKY model with random-effects shows strong signals of nonreversibility in the substitution process, and posterior predictive model checks clearly show that it is a more adequate model than a reversible model. When analyzing the pattern of phylogeographic spread of 1441 influenza A virus (H3N2) sequences between 14 regions, a random-effects phylogeographic substitution model infers that air travel volume adequately predicts almost all dispersal rates. A random-effects state-dependent substitution model reveals no evidence for an effect of arboreality on the swimming mode in the tree frog subfamily Hylinae. Simulations reveal that random-effects substitution models can accommodate both negligible and radical departures from the underlying base substitution model. We show that our gradient-based inference approach is over an order of magnitude more time efficient than conventional approaches.

13.
AIDS Res Hum Retroviruses ; 39(5): 241-252, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36785940

RESUMO

Public health surveillance data used in HIV molecular cluster analyses lack contextual information that is available from partner services (PS) data. Integrating these data sources in retrospective analyses can enrich understanding of the risk profile of people in clusters. In this study, HIV molecular clusters were identified and matched to information on partners and other information gleaned at the time of diagnosis, including coinfection with syphilis. We aimed to produce a more complete understanding of molecular cluster membership in Houston, Texas, a city ranking ninth nationally in rate of new HIV diagnoses that may benefit from retrospective matched analyses between molecular and PS data to inform future intervention. Data from PS were matched to molecular HIV records of people newly diagnosed from 2012 to 2018. By conducting analyses in HIV-TRACE (TRAnsmission Cluster Engine) using viral genetic sequences, molecular clusters were detected. Multivariable logistic regression models were used to estimate the association between molecular cluster membership and completion of a PS interview, number of named partners, and syphilis coinfection. Using data from 4,035 people who had a viral genetic sequence and matched PS records, molecular cluster membership was not significantly associated with completion of a PS interview. Among those with sequences who completed a PS interview (n = 3,869), 45.3% (n = 1,753) clustered. Molecular cluster membership was significantly associated with naming 1 or 3+ partners compared with not naming any partners [adjusted odds ratio, aOR: 1.27 (95% confidence interval, CI: 1.08-1.50), p = .003 and aOR: 1.38 (95% CI: 1.06-1.81), p = .02]. Alone, coinfection with syphilis was not significantly associated with molecular cluster membership. Syphilis coinfection was associated with molecular cluster membership when coupled with incarceration [aOR: 1.91 (95% CI: 1.08-3.38), p = .03], a risk for treatment interruption. Enhanced intervention among those with similar profiles, such as people coinfected with other risks, may be warranted.


Assuntos
Coinfecção , Infecções por HIV , Sífilis , Humanos , Coinfecção/epidemiologia , Estudos Retrospectivos , Infecções por HIV/epidemiologia , Análise por Conglomerados , Genes Virais , Sífilis/epidemiologia
14.
Sci Rep ; 12(1): 19230, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357480

RESUMO

Detection of viral transmission clusters using molecular epidemiology is critical to the response pillar of the Ending the HIV Epidemic initiative. Here, we studied whether inference with an incomplete dataset would influence the accuracy of the reconstructed molecular transmission network. We analyzed viral sequence data available from ~ 13,000 individuals with diagnosed HIV (2012-2019) from Houston Health Department surveillance data with 53% completeness (n = 6852 individuals with sequences). We extracted random subsamples and compared the resulting reconstructed networks versus the full-size network. Increasing simulated completeness was associated with an increase in the number of detected clusters. We also subsampled based on the network node influence in the transmission of the virus where we measured Expected Force (ExF) for each node in the network. We simulated the removal of nodes with the highest and then lowest ExF from the full dataset and discovered that 4.7% and 60% of priority clusters were detected respectively. These results highlight the non-uniform impact of capturing high influence nodes in identifying transmission clusters. Although increasing sequence reporting completeness is the way to fully detect HIV transmission patterns, reaching high completeness has remained challenging in the real world. Hence, we suggest taking a network science approach to enhance performance of molecular cluster detection, augmented by node influence information.


Assuntos
Epidemias , Infecções por HIV , Humanos , Análise por Conglomerados , Epidemiologia Molecular , Dados de Sequência Molecular , Filogenia
15.
Sci Rep ; 12(1): 15749, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131001

RESUMO

The use of real-time genomic epidemiology has enabled the tracking of the global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), informing evidence-based public health decision making. Ukraine has experienced four waves of the Coronavirus Disease 2019 (COVID-19) between spring 2020 and spring 2022. However, insufficient capacity for local genetic sequencing limited the potential application of SARS-CoV-2 genomic surveillance for public health response in the country. Herein, we report local sequencing of 103 SARS-CoV-2 genomes from patient samples collected in Kyiv in July-December 2021 using Oxford Nanopore technology. Together with other published Ukrainian SARS-CoV-2 genomes, our data suggest that the third wave of the epidemic in Ukraine (June-December 2021) was dominated by the Delta Variant of Concern (VOC). Our phylogeographic analysis revealed that in summer 2021 Delta VOC was introduced into Ukraine from multiple locations worldwide, with most introductions coming from Central and Eastern European countries. The wide geographic range of Delta introductions coincides with increased volume of travel to Ukraine particularly from locations outside of Europe in summer 2021. This study highlights the need to urgently integrate affordable and easily scaled pathogen sequencing technologies in locations with less developed genomic infrastructure, in order to support local public health decision making.


Assuntos
COVID-19 , Sequenciamento por Nanoporos , COVID-19/epidemiologia , Humanos , SARS-CoV-2/genética , Ucrânia/epidemiologia
16.
Nat Commun ; 13(1): 5477, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115862

RESUMO

Human herpes simplex virus 2 (HSV-2) is a ubiquitous, slowly evolving DNA virus. HSV-2 has two primary lineages, one found in West and Central Africa and the other found worldwide. Competing hypotheses have been proposed to explain how HSV-2 migrated out-of-Africa (i)HSV-2 followed human migration out-of-Africa 50-100 thousand years ago, or (ii)HSV-2 migrated via the trans-Atlantic slave trade 150-500 years ago. Limited geographic sampling and lack of molecular clock signal has precluded robust comparison. Here, we analyze newly sequenced HSV-2 genomes from Africa to resolve geography and timing of divergence events within HSV-2. Phylogeographic analysis consistently places the ancestor of worldwide dispersal in East Africa, though molecular clock is too slow to be detected using available data. Rates 4.2 × 10-8-5.6 × 10-8 substitutions/site/year, consistent with previous age estimates, suggest a worldwide dispersal 22-29 thousand years ago. Thus, HSV-2 likely migrated with humans from East Africa and dispersed after the Last Glacial Maximum.


Assuntos
Genoma , Herpesvirus Humano 2 , Adulto , África , Sequência de Bases , Herpesvirus Humano 2/genética , Humanos , Filogeografia , Adulto Jovem
17.
Nat Commun ; 13(1): 4784, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970983

RESUMO

Regional connectivity and land travel have been identified as important drivers of SARS-CoV-2 transmission. However, the generalizability of this finding is understudied outside of well-sampled, highly connected regions. In this study, we investigated the relative contributions of regional and intercontinental connectivity to the source-sink dynamics of SARS-CoV-2 for Jordan and the Middle East. By integrating genomic, epidemiological and travel data we show that the source of introductions into Jordan was dynamic across 2020, shifting from intercontinental seeding in the early pandemic to more regional seeding for the travel restrictions period. We show that land travel, particularly freight transport, drove introduction risk during the travel restrictions period. High regional connectivity and land travel also drove Jordan's export risk. Our findings emphasize regional connectedness and land travel as drivers of transmission in the Middle East.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Oriente Médio/epidemiologia , Pandemias/prevenção & controle , Viagem
18.
Science ; 377(6609): 960-966, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35881005

RESUMO

Understanding the circumstances that lead to pandemics is important for their prevention. We analyzed the genomic diversity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus disease 2019 (COVID-19) pandemic. We show that SARS-CoV-2 genomic diversity before February 2020 likely comprised only two distinct viral lineages, denoted "A" and "B." Phylodynamic rooting methods, coupled with epidemic simulations, reveal that these lineages were the result of at least two separate cross-species transmission events into humans. The first zoonotic transmission likely involved lineage B viruses around 18 November 2019 (23 October to 8 December), and the separate introduction of lineage A likely occurred within weeks of this event. These findings indicate that it is unlikely that SARS-CoV-2 circulated widely in humans before November 2019 and define the narrow window between when SARS-CoV-2 first jumped into humans and when the first cases of COVID-19 were reported. As with other coronaviruses, SARS-CoV-2 emergence likely resulted from multiple zoonotic events.


Assuntos
COVID-19 , Pandemias , SARS-CoV-2 , Zoonoses Virais , Animais , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Simulação por Computador , Variação Genética , Genômica/métodos , Humanos , Epidemiologia Molecular , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Zoonoses Virais/epidemiologia , Zoonoses Virais/virologia
19.
Science ; 377(6609): 951-959, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35881010

RESUMO

Understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 is critical to preventing future zoonotic outbreaks before they become the next pandemic. The Huanan Seafood Wholesale Market in Wuhan, China, was identified as a likely source of cases in early reports, but later this conclusion became controversial. We show here that the earliest known COVID-19 cases from December 2019, including those without reported direct links, were geographically centered on this market. We report that live SARS-CoV-2-susceptible mammals were sold at the market in late 2019 and that within the market, SARS-CoV-2-positive environmental samples were spatially associated with vendors selling live mammals. Although there is insufficient evidence to define upstream events, and exact circumstances remain obscure, our analyses indicate that the emergence of SARS-CoV-2 occurred through the live wildlife trade in China and show that the Huanan market was the epicenter of the COVID-19 pandemic.


Assuntos
COVID-19 , Pandemias , SARS-CoV-2 , Alimentos Marinhos , Zoonoses Virais , Animais , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , China/epidemiologia , Humanos , SARS-CoV-2/isolamento & purificação , Alimentos Marinhos/virologia , Zoonoses Virais/epidemiologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
20.
J Infect Dis ; 226(12): 2142-2149, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-35771664

RESUMO

BACKGROUND: Monitoring the emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is an important public health objective. We investigated how the Gamma variant was established in New York City (NYC) in early 2021 in the presence of travel restrictions that aimed to prevent viral spread from Brazil, the country where the variant was first identified. METHODS: We performed phylogeographic analysis on 15 967 Gamma sequences sampled between 10 March and 1 May 2021, to identify geographic sources of Gamma lineages introduced into NYC. We identified locally circulating Gamma transmission clusters and inferred the timing of their establishment in NYC. RESULTS: We identified 16 phylogenetically distinct Gamma clusters established in NYC (cluster sizes ranged 2-108 genomes); most of them were introduced from Florida and Illinois and only 1 directly from Brazil. By the time the first Gamma case was reported by genomic surveillance in NYC on 10 March, the majority (57%) of circulating Gamma lineages had already been established in the city for at least 2 weeks. CONCLUSIONS: Although travel from Brazil to the United States was restricted from May 2020 through the end of the study period, this restriction did not prevent Gamma from becoming established in NYC as most introductions occurred from domestic locations.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Cidade de Nova Iorque/epidemiologia , COVID-19/epidemiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA