Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
G3 (Bethesda) ; 14(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38409337

RESUMO

Robust genetic systems to control the expression of transgenes in a spatial and temporal manner are a valuable asset for researchers. The GeneSwitch system induced by the drug RU486 has gained widespread use in the Drosophila community. However, some concerns were raised as negative effects were seen depending on the stock, transgene, stage, and tissue under study. Here, we characterized the adverse effects triggered by activating the GeneSwitch system in adult muscles using the MHC-GS-GAL4 driver. When a control, mock UAS-RNAi transgene was induced by feeding adult flies with RU486, we found that the overall muscle structure, including myofibrils and mitochondrial shape, was significantly disrupted and led to a significant reduction in the lifespan. Remarkably, lifespan was even shorter when 2 copies of the driver were used even without the mock UAS-RNAi transgene. Thus, researchers should be cautious when interpreting the results given the adverse effects we found when inducing RU486-dependent MHC-GS-GAL4 in adult muscles. To account for the impact of these effects we recommend adjusting the dose of RU486, setting up additional control groups, such as a mock UAS-RNAi transgene, as comparing the phenotypes between RU486-treated and untreated animals could be insufficient.


Assuntos
Mifepristona , Transgenes , Animais , Mifepristona/farmacologia , Músculos/metabolismo , Músculos/efeitos dos fármacos , Proteínas de Drosophila/genética , Animais Geneticamente Modificados , Interferência de RNA , Drosophila/genética , Drosophila/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/efeitos dos fármacos , Fenótipo , Longevidade/efeitos dos fármacos , Longevidade/genética
2.
Cells ; 12(21)2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37947593

RESUMO

Circadian rhythm disturbances are associated with various negative health outcomes, including an increasing incidence of chronic diseases with high societal costs. While exercise can protect against the negative effects of rhythm disruption, it is not available to all those impacted by sleep disruptions, in part because sleep disruption itself reduces exercise capacity. Thus, there is a need for therapeutics that bring the benefits of exercise to this population. Here, we investigate the relationship between exercise and circadian disturbances using a well-established Drosophila model of circadian rhythm loss, the Clkout mutant. We find that Clkout causes reduced exercise capacity, measured as post-training endurance, flight performance, and climbing speed, and these phenotypes are not rescued by chronic exercise training. However, exogenous administration of a molecule known to mediate the effects of chronic exercise, octopamine (OA), was able to effectively rescue mutant exercise performance, including the upregulation of other known exercise-mediating transcripts, without restoring the circadian rhythms of mutants. This work points the way toward the discovery of novel therapeutics that can restore exercise capacity in patients with rhythm disruption.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Octopamina/farmacologia , Proteínas de Drosophila/genética , Ritmo Circadiano/genética , Fenótipo
3.
Proc Natl Acad Sci U S A ; 120(39): e2220556120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722048

RESUMO

Mammalian FNDC5 encodes a protein precursor of Irisin, which is important for exercise-dependent regulation of whole-body metabolism. In a genetic screen in Drosophila, we identified Iditarod (Idit), which shows substantial protein homology to mouse and human FNDC5, as a regulator of autophagy acting downstream of Atg1/Atg13. Physiologically, Idit-deficient flies showed reduced exercise performance and defective cold resistance, which were rescued by exogenous expression of Idit. Exercise training increased endurance in wild-type flies, but not in Idit-deficient flies. Conversely, Idit is induced upon exercise training, and transgenic expression of Idit in wild-type flies increased endurance to the level of exercise trained flies. Finally, Idit deficiency prevented both exercise-induced increase in cardiac Atg8 and exercise-induced cardiac stress resistance, suggesting that cardiac autophagy may be an additional mechanism by which Idit is involved in the adaptive response to exercise. Our work suggests an ancient role of an Iditarod/Irisin/FNDC5 family of proteins in autophagy, exercise physiology, and cold adaptation, conserved throughout metazoan species.


Assuntos
Proteínas de Drosophila , Fibronectinas , Animais , Humanos , Camundongos , Animais Geneticamente Modificados , Autofagia , Drosophila , Fibronectinas/metabolismo , Mamíferos , Fatores de Transcrição , Proteínas de Drosophila/metabolismo
4.
Elife ; 112022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35170431

RESUMO

Endurance exercise is a potent intervention with widespread benefits proven to reduce disease incidence and impact across species. While endurance exercise supports neural plasticity, enhanced memory, and reduced neurodegeneration, less is known about the effect of chronic exercise on the progression of movement disorders such as ataxias. Here, we focused on three different types of ataxias, spinocerebellar ataxias type (SCAs) 2, 3, and 6, belonging to the polyglutamine (polyQ) family of neurodegenerative disorders. In Drosophila models of these SCAs, flies progressively lose motor function. In this study, we observe marked protection of speed and endurance in exercised SCA2 flies and modest protection in exercised SCA6 models, with no benefit to SCA3 flies. Causative protein levels are reduced in SCA2 flies after chronic exercise, but not in SCA3 models, linking protein levels to exercise-based benefits. Further mechanistic investigation indicates that the exercise-inducible protein, Sestrin (Sesn), suppresses mobility decline and improves early death in SCA2 flies, even without exercise, coincident with disease protein level reduction and increased autophagic flux. These improvements partially depend on previously established functions of Sesn that reduce oxidative damage and modulate mTOR activity. Our study suggests differential responses of polyQ SCAs to exercise, highlighting the potential for more extensive application of exercise-based therapies in the prevention of polyQ neurodegeneration. Defining the mechanisms by which endurance exercise suppresses polyQ SCAs will open the door for more effective treatment for these diseases.


Assuntos
Drosophila , Treino Aeróbico/métodos , Ataxias Espinocerebelares/terapia , Animais , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Exercício Físico , Humanos , Oxirredução , Oxirredutases/metabolismo , Peptídeos/metabolismo , Fenótipo , Serina-Treonina Quinases TOR/metabolismo , Expansão das Repetições de Trinucleotídeos
6.
Sensors (Basel) ; 21(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673520

RESUMO

Animal behavior is an essential element in behavioral neuroscience study. However, most behavior studies in small animals such as fruit flies (Drosophilamelanogaster) have been performed in a limited spatial chamber or by tethering the fly's body on a fixture, which restricts its natural behavior. In this paper, we developed the Transparent Omnidirectional Locomotion Compensator (TOLC) for a freely walking fruit fly without tethering, which enables its navigation in infinite space. The TOLC maintains a position of a fruit fly by compensating its motion using the transparent sphere. The TOLC is capable of maintaining the position error < 1 mm for 90.3% of the time and the heading error < 5° for 80.2% of the time. The inverted imaging system with a transparent sphere secures the space for an additional experimental apparatus. Because the proposed TOLC allows us to observe a freely walking fly without physical tethering, there is no potential injury during the experiment. Thus, the TOLC will offer a unique opportunity to investigate longitudinal studies of a wide range of behavior in an unrestricted walking Drosophila.


Assuntos
Comportamento Animal , Drosophila melanogaster , Locomoção , Fisiologia/instrumentação , Animais , Desenho de Equipamento
7.
J Biol Chem ; 295(12): 3794-3807, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32024695

RESUMO

The troponin complex regulates the Ca2+ activation of myofilaments during striated muscle contraction and relaxation. Troponin genes emerged 500-700 million years ago during early animal evolution. Troponin T (TnT) is the thin-filament-anchoring subunit of troponin. Vertebrate and invertebrate TnTs have conserved core structures, reflecting conserved functions in regulating muscle contraction, and they also contain significantly diverged structures, reflecting muscle type- and species-specific adaptations. TnT in insects contains a highly-diverged structure consisting of a long glutamic acid-rich C-terminal extension of ∼70 residues with unknown function. We found here that C-terminally truncated Drosophila TnT (TpnT-CD70) retains binding of tropomyosin, troponin I, and troponin C, indicating a preserved core structure of TnT. However, the mutant TpnTCD70 gene residing on the X chromosome resulted in lethality in male flies. We demonstrate that this X-linked mutation produces dominant-negative phenotypes, including decreased flying and climbing abilities, in heterozygous female flies. Immunoblot quantification with a TpnT-specific mAb indicated expression of TpnT-CD70 in vivo and normal stoichiometry of total TnT in myofilaments of heterozygous female flies. Light and EM examinations revealed primarily normal sarcomere structures in female heterozygous animals, whereas Z-band streaming could be observed in the jump muscle of these flies. Although TpnT-CD70-expressing flies exhibited lower resistance to cardiac stress, their hearts were significantly more tolerant to Ca2+ overloading induced by high-frequency electrical pacing. Our findings suggest that the Glu-rich long C-terminal extension of insect TnT functions as a myofilament Ca2+ buffer/reservoir and is potentially critical to the high-frequency asynchronous contraction of flight muscles.


Assuntos
Proteínas de Drosophila/metabolismo , Ácido Glutâmico/metabolismo , Músculo Esquelético/metabolismo , Troponina T/metabolismo , Processamento Alternativo , Animais , Ligante CD27/química , Ligante CD27/metabolismo , Cálcio/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/classificação , Proteínas de Drosophila/genética , Feminino , Voo Animal , Masculino , Contração Muscular , Mutagênese , Miofibrilas/metabolismo , Filogenia , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Tropomiosina/química , Tropomiosina/metabolismo , Troponina T/química , Troponina T/classificação , Troponina T/genética , Cromossomo X
8.
Nat Commun ; 11(1): 190, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31929512

RESUMO

Exercise is among the most effective interventions for age-associated mobility decline and metabolic dysregulation. Although long-term endurance exercise promotes insulin sensitivity and expands respiratory capacity, genetic components and pathways mediating the metabolic benefits of exercise have remained elusive. Here, we show that Sestrins, a family of evolutionarily conserved exercise-inducible proteins, are critical mediators of exercise benefits. In both fly and mouse models, genetic ablation of Sestrins prevents organisms from acquiring metabolic benefits of exercise and improving their endurance through training. Conversely, Sestrin upregulation mimics both molecular and physiological effects of exercise, suggesting that it could be a major effector of exercise metabolism. Among the various targets modulated by Sestrin in response to exercise, AKT and PGC1α are critical for the Sestrin effects in extending endurance. These results indicate that Sestrin is a key integrating factor that drives the benefits of chronic exercise to metabolism and physical endurance.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Exercício Físico/fisiologia , Proteínas de Choque Térmico/metabolismo , Oxirredutases/metabolismo , Peroxidases/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Drosophila , Proteínas de Drosophila/genética , Metabolismo Energético , Expressão Gênica , Proteínas de Choque Térmico/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Biogênese de Organelas , Oxirredutases/genética , Peroxidases/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Resistência Física/genética , Resistência Física/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
9.
J Mol Cell Cardiol ; 127: 116-124, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30571977

RESUMO

In yeast, the Atg2-Atg18 complex regulates Atg9 recycling from phagophore assembly site during autophagy; their function in higher eukaryotes remains largely unknown. In a targeted screening in Drosophila melanogaster, we show that Mef2-GAL4-RNAi-mediated knockdown of Atg2, Atg9 or Atg18 in the heart and indirect flight muscles led to shortened healthspan (declined locomotive function) and lifespan. These flies displayed an accelerated age-dependent loss of cardiac function along with cardiac hypertrophy (increased heart tube wall thickness) and structural abnormality (distortion of the lumen surface). Using the Mef2-GAL4-MitoTimer mitochondrial reporter system and transmission electron microscopy, we observed significant elongation of mitochondria and reduced number of lysosome-targeted autophagosomes containing mitochondria in the heart tube but exaggerated mitochondrial fragmentation and reduced mitochondrial density in indirect flight muscles. These findings provide the first direct evidence of the importance of Atg2-Atg18/Atg9 autophagy complex in the maintenance of mitochondrial integrity and, regulation of heart and muscle functions in Drosophila, raising the possibility of augmenting Atg2-Atg18/Atg9 activity in promoting mitochondrial health and, muscle and heart function.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Coração/fisiologia , Longevidade/fisiologia , Mitocôndrias Cardíacas/metabolismo , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Drosophila melanogaster/ultraestrutura , Feminino , Masculino , Proteínas de Membrana/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Músculos/metabolismo
10.
Nano Lett ; 17(2): 1262-1268, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28112520

RESUMO

Despite recent advances in thermometry, determination of temperature at the nanometer scale in single molecules to live cells remains a challenge that holds great promise in disease detection among others. In the present study, we use a new approach to nanometer scale thermometry with a spatial and thermal resolution of 80 nm and 1 mK respectively, by directly associating 2 nm cadmium telluride quantum dots (CdTe QDs) to the subject under study. The 2 nm CdTe QDs physically adhered to bovine cardiac and rabbit skeletal muscle myosin, enabling the determination of heat released when ATP is hydrolyzed by both myosin motors. Greater heat loss reflects less work performed by the motor, hence decreased efficiency. Surprisingly, we found rabbit skeletal myosin to be more efficient than bovine cardiac. We have further extended this approach to demonstrate the gain in efficiency of Drosophila melanogaster skeletal muscle overexpressing the PGC-1α homologue spargel, a known mediator of improved exercise performance in humans. Our results establish a novel approach to determine muscle efficiency with promise for early diagnosis and treatment of various metabolic disorders including cancer.


Assuntos
Compostos de Cádmio/química , Miosinas Cardíacas/química , Músculo Esquelético/fisiologia , Pontos Quânticos/química , Miosinas de Músculo Esquelético/química , Telúrio/química , Trifosfato de Adenosina/química , Animais , Bovinos , Drosophila melanogaster/fisiologia , Fluorescência , Hidrólise , Masculino , Nanotecnologia , Tamanho da Partícula , Coelhos , Miosinas de Músculo Esquelético/fisiologia , Propriedades de Superfície , Temperatura , Termometria
11.
PLoS One ; 10(12): e0145356, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26671664

RESUMO

Human PNPLA6 gene encodes Neuropathy Target Esterase protein (NTE). PNPLA6 gene mutations cause hereditary spastic paraplegia (SPG39 HSP), Gordon-Holmes syndrome, Boucher-Neuhäuser syndromes, Laurence-Moon syndrome, and Oliver-McFarlane syndrome. Mutations in the Drosophila NTE homolog swiss cheese (sws) cause early-onset, progressive behavioral defects and neurodegeneration characterized by vacuole formation. We investigated sws5 flies and show for the first time that this allele causes progressive vacuolar formation in the brain and progressive deterioration of negative geotaxis speed and endurance. We demonstrate that inducible, neuron-specific expression of full-length human wildtype NTE reduces vacuole formation and substantially rescues mobility. Indeed, neuron-specific expression of wildtype human NTE is capable of rescuing mobility defects after 10 days of adult life at 29°C, when significant degeneration has already occurred, and significantly extends longevity of mutants at 25°C. These results raise the exciting possibility that late induction of NTE function may reduce or ameliorate neurodegeneration in humans even after symptoms begin. In addition, these results highlight the utility of negative geotaxis endurance as a new assay for longitudinal tracking of degenerative phenotypes in Drosophila.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Atividade Motora , Mutação/genética , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/genética , Fosfolipases/metabolismo , Envelhecimento , Animais , Progressão da Doença , Humanos , Longevidade , Vacúolos/metabolismo
12.
Med Hypotheses ; 85(6): 882-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26415977

RESUMO

Chronic diseases are the leading cause of death and disability worldwide, and many of these conditions are linked to chronic inflammation. One potential cause of chronic inflammation is an increased intestinal epithelial permeability. Recent studies have demonstrated that parasympathetic stimulation via the efferent abdominal vagus nerve increases the expression and proper localization of tight junction proteins and decreases intestinal epithelial permeability. This finding may provide a novel approach for treating and preventing many chronic conditions. Importantly, physical activity is associated with increased resting parasympathetic (vagal) activity and lower risk of chronic diseases. However, high intensity long duration exercise can be harmful to overall health. Specifically, individuals who frequently exercise strenuously and for longer time intervals have the same mortality rates as sedentary individuals. This may be explained, in part, by longer periods of reduced vagal activity as vagal activity is markedly reduced both during and after intense exercise. We hypothesize that one mechanism by which exercise provides its health benefits is by increasing resting vagal activity and decreasing intestinal epithelial permeability, thus decreasing chronic inflammation. Additionally, we hypothesize that long periods of reduced vagal activity in individuals who exercise at high intensities and for longer durations, decrease the integrity of the intestinal barrier, putting them at greater risk of chronic inflammation and a host of chronic diseases. Thus, this hypothesis provides a conceptual link between the well-established benefits of frequent exercise and the paradoxical deleterious effects of prolonged, high-intensity exercise without adequate rest.


Assuntos
Exercício Físico , Intestinos/inervação , Intestinos/fisiologia , Junções Íntimas/fisiologia , Estimulação do Nervo Vago , Doença Crônica , Homeostase , Humanos , Inflamação , Mucosa Intestinal/fisiologia , Permeabilidade , Descanso , Nervo Vago/fisiologia
13.
Aging (Albany NY) ; 7(8): 535-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26298685

RESUMO

Endurance exercise has emerged as a powerful intervention that promotes healthy aging by maintaining the functional capacity of critical organ systems. In addition, long-term exercise reduces the incidence of age-related diseases in humans and in model organisms. Despite these evident benefits, the genetic pathways required for exercise interventions to achieve these effects are still relatively poorly understood. Here, we compare gene expression changes during endurance training in Drosophila melanogaster to gene expression changes during selective breeding for longevity. Microarrays indicate that 65% of gene expression changes found in flies selectively bred for longevity are also found in flies subjected to three weeks of exercise training. We find that both selective breeding and endurance training increase endurance, cardiac performance, running speed, flying height, and levels of autophagy in adipose tissue. Both interventions generally upregulate stress defense, folate metabolism, and lipase activity, while downregulating carbohydrate metabolism and odorant receptor expression. Several members of the methuselah-like (mthl) gene family are downregulated by both interventions. Knockdown of mthl-3 was sufficient to provide extension of negative geotaxis behavior, endurance and cardiac stress resistance. These results provide support for endurance exercise as a broadly acting anti-aging intervention and confirm that exercise training acts in part by targeting longevity assurance pathways.


Assuntos
Drosophila melanogaster/fisiologia , Longevidade/genética , Condicionamento Físico Animal , Seleção Artificial , Animais , Feminino , Voo Animal/fisiologia , Perfilação da Expressão Gênica , Genes de Insetos , Coração/fisiologia , Masculino
14.
J Biol Chem ; 289(17): 12005-12015, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24644293

RESUMO

Mitochondrial dysfunction plays important roles in many diseases, but there is no satisfactory method to assess mitochondrial health in vivo. Here, we engineered a MitoTimer reporter gene from the existing Timer reporter gene. MitoTimer encodes a mitochondria-targeted green fluorescent protein when newly synthesized, which shifts irreversibly to red fluorescence when oxidized. Confocal microscopy confirmed targeting of the MitoTimer protein to mitochondria in cultured cells, Caenorhabditis elegans touch receptor neurons, Drosophila melanogaster heart and indirect flight muscle, and mouse skeletal muscle. A ratiometric algorithm revealed that conditions that cause mitochondrial stress led to a significant shift toward red fluorescence as well as accumulation of pure red fluorescent puncta of damaged mitochondria targeted for mitophagy. Long term voluntary exercise resulted in a significant fluorescence shift toward green, in mice and D. melanogaster, as well as significantly improved structure and increased content in mouse FDB muscle. In contrast, high-fat feeding in mice resulted in a significant shift toward red fluorescence and accumulation of pure red puncta in skeletal muscle, which were completely ameliorated by voluntary wheel running. Hence, MitoTimer allows for robust analysis of multiple parameters of mitochondrial health under both physiological and pathological conditions and will be highly useful for future research of mitochondrial health in multiple disciplines in vivo.


Assuntos
Genes Reporter , Mitocôndrias/fisiologia , Estresse Oxidativo , Animais , Caenorhabditis elegans/genética , Linhagem Celular , Drosophila melanogaster/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Condicionamento Físico Animal , Espectrometria de Fluorescência
15.
J Vis Exp ; (61)2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22472601

RESUMO

One of the most pressing problems facing modern medical researchers is the surging levels of obesity, with the consequent increase in associated disorders such as diabetes and cardiovascular disease (1-3). An important topic of research into these associated health problems involves the role of endurance exercise as a beneficial intervention. Exercise training is an inexpensive, non-invasive intervention with several beneficial results, including reduction in excess body fat (4), increased insulin sensitivity in skeletal muscle (5), increased anti-inflammatory and antioxidative responses (6), and improved contractile capacity in cardiomyocytes (7). Low intensity exercise is known to increase mitochondrial activity and biogenesis in humans (8) and mice, with the transcriptional coactivator PGC1-α as an important intermediate (9,10). Despite the importance of exercise as a tool for combating several important age-related diseases, extensive longitudinal genetic studies have been impeded by the lack of an endurance training protocol for a short-lived genetic model species. The variety of genetic tools available for use with Drosophila, together with its short lifespan and inexpensive maintenance, make it an appealing model for further study of these genetic mechanisms. With this in mind we have developed a novel apparatus, known as the Power Tower, for large scale exercise-training in Drosophila melanogaster (11). The Power Tower utilizes the flies' instinctive negative geotaxis behavior to repetitively induce rapid climbing. Each time the machine lifts, then drops, the platform of flies, the flies are induced to climb. Flies continue to respond as long as the machine is in operation or until they become too fatigued to respond. Thus, the researcher can use this machine to provide simultaneous training to large numbers of age-matched and genetically identical flies. Additionally, we describe associated assays useful to track longitudinal progress of fly cohorts during training.


Assuntos
Drosophila melanogaster/fisiologia , Condicionamento Físico Animal/métodos , Animais , Condicionamento Físico Animal/instrumentação
16.
PLoS One ; 7(2): e31633, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22348115

RESUMO

Endurance exercise is an inexpensive intervention that is thought to provide substantial protection against several age-related pathologies, as well as inducing acute changes to endurance capacity and metabolism. Recently, it has been established that endurance exercise induces conserved alterations in physiological capacity in the invertebrate Drosophila model. If the genetic factors underlying these exercise-induced physiological alterations are widely conserved, then invertebrate genetic model systems will become a valuable tool for testing of genetic and pharmacological mimetics for endurance training. Here, we assess whether the Drosophila homolog of the vertebrate exercise response gene PGC-1α spargel (srl) is necessary or sufficient to induce exercise-dependent phenotypes. We find that reduction of srl expression levels acutely compromises negative geotaxis ability and reduces exercise-induced improvement in both negative geotaxis and time to exhaustion. Conversely, muscle/heart specific srl overexpression improves negative geotaxis and cardiac performance in unexercised flies. In addition, we find that srl overexpression mimics some, but not all, exercise-induced phenotypes, suggesting that other factors also act in parallel to srl to regulate exercise-induced physiological changes in muscle and heart.


Assuntos
Proteínas de Drosophila/fisiologia , Condicionamento Físico Animal , Resistência Física/genética , Fator B de Elongação Transcricional Positiva/fisiologia , Animais , Drosophila , Proteínas de Choque Térmico , Fatores de Transcrição
17.
PLoS Genet ; 7(11): e1002344, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22072978

RESUMO

A significant current challenge in human genetics is the identification of interacting genetic loci mediating complex polygenic disorders. One of the best characterized polygenic diseases is Down syndrome (DS), which results from an extra copy of part or all of chromosome 21. A short interval near the distal tip of chromosome 21 contributes to congenital heart defects (CHD), and a variety of indirect genetic evidence suggests that multiple candidate genes in this region may contribute to this phenotype. We devised a tiered genetic approach to identify interacting CHD candidate genes. We first used the well vetted Drosophila heart as an assay to identify interacting CHD candidate genes by expressing them alone and in all possible pairwise combinations and testing for effects on rhythmicity or heart failure following stress. This comprehensive analysis identified DSCAM and COL6A2 as the most strongly interacting pair of genes. We then over-expressed these two genes alone or in combination in the mouse heart. While over-expression of either gene alone did not affect viability and had little or no effect on heart physiology or morphology, co-expression of the two genes resulted in ≈50% mortality and severe physiological and morphological defects, including atrial septal defects and cardiac hypertrophy. Cooperative interactions between DSCAM and COL6A2 were also observed in the H9C2 cardiac cell line and transcriptional analysis of this interaction points to genes involved in adhesion and cardiac hypertrophy. Our success in defining a cooperative interaction between DSCAM and COL6A2 suggests that the multi-tiered genetic approach we have taken involving human mapping data, comprehensive combinatorial screening in Drosophila, and validation in vivo in mice and in mammalian cells lines should be applicable to identifying specific loci mediating a broad variety of other polygenic disorders.


Assuntos
Moléculas de Adesão Celular/metabolismo , Colágeno Tipo VI/genética , Cardiopatias Congênitas/genética , Herança Multifatorial , Animais , Adesão Celular/genética , Moléculas de Adesão Celular/genética , Linhagem Celular , Cromossomos Humanos Par 21/genética , Colágeno Tipo VI/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Coração/anatomia & histologia , Coração/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , Fenótipo
18.
Genes Dev ; 25(2): 189-200, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21245170

RESUMO

The epidemic of obesity and diabetes is causing an increased incidence of dyslipidemia-related heart failure. While the primary etiology of lipotoxic cardiomyopathy is an elevation of lipid levels resulting from an imbalance in energy availability and expenditure, increasing evidence suggests a relationship between dysregulation of membrane phospholipid homeostasis and lipid-induced cardiomyopathy. In the present study, we report that the Drosophila easily shocked (eas) mutants that harbor a disturbance in phosphatidylethanolamine (PE) synthesis display tachycardia and defects in cardiac relaxation and are prone to developing cardiac arrest and fibrillation under stress. The eas mutant hearts exhibit elevated concentrations of triglycerides, suggestive of a metabolic, diabetic-like heart phenotype. Moreover, the low PE levels in eas flies mimic the effects of cholesterol deficiency in vertebrates by stimulating the Drosophila sterol regulatory element-binding protein (dSREBP) pathway. Significantly, cardiac-specific elevation of dSREBP signaling adversely affects heart function, reflecting the cardiac eas phenotype, whereas suppressing dSREBP or lipogenic target gene function in eas hearts rescues the cardiac hyperlipidemia and heart function disorders. These findings suggest that dysregulated phospholipid signaling that alters SREBP activity contributes to the progression of impaired heart function in flies and identifies a potential link to lipotoxic cardiac diseases in humans.


Assuntos
Drosophila melanogaster/fisiologia , Homeostase/fisiologia , Metabolismo dos Lipídeos/fisiologia , Fosfolipídeos/metabolismo , Transdução de Sinais , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Coração/fisiologia , Homeostase/genética , Metabolismo dos Lipídeos/genética , Masculino , Mutação , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Estresse Fisiológico
19.
Proc Natl Acad Sci U S A ; 104(10): 3943-8, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-17360457

RESUMO

Population profiles of industrialized countries show dramatic increases in cardiovascular disease with age, but the molecular and genetic basis of disease progression has been difficult to study because of the lack of suitable model systems. Our studies of Drosophila show a markedly elevated incidence of cardiac dysfunction and arrhythmias in aging fruit fly hearts and a concomitant decrease in the expression of the Drosophila homolog of human KCNQ1-encoded K(+) channel alpha subunits. In humans, this channel is involved in myocardial repolarization, and alterations in the function of this channel are associated with an increased risk for Torsades des Pointes arrhythmias and sudden death. Hearts from young KCNQ1 mutant fruit flies exhibit prolonged contractions and fibrillations reminiscent of Torsades des Pointes arrhythmias, and they exhibit severely increased susceptibility to pacing-induced cardiac dysfunction at young ages, characteristics that are observed only at advanced ages in WT flies. The fibrillations observed in mutant flies correlate with delayed relaxation of the myocardium, as revealed by increases in the duration of phasic contractions, extracellular field potentials, and in the baseline diastolic tension. These results suggest that K(+) currents, mediated by a KCNQ channel, contribute to the repolarization reserve of fly hearts, ensuring normal excitation-contraction coupling and rhythmical contraction. That arrhythmias in both WT and KCNQ1 mutants become worse as flies age suggests that additional factors are also involved.


Assuntos
Envelhecimento , Arritmias Cardíacas/genética , Canais de Potássio KCNQ/genética , Mutação , Animais , Drosophila melanogaster , Eletrofisiologia , Regulação da Expressão Gênica , Humanos , Síndrome do QT Longo/genética , Músculos/metabolismo , Miocárdio/metabolismo , Fatores de Tempo , Torsades de Pointes/genética
20.
Semin Cell Dev Biol ; 18(1): 111-6, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17275368

RESUMO

Health care for the elderly in western society has emerged as an increasingly important economic and political issue in recent years. As the elderly proportion of western populations continues to expand, maintaining health and wellness of the aged will continue to be an important research priority in the near future. This review will attempt to briefly highlight what is known about age-related changes in cardiac performance in humans, then focus on recent work on cellular mechanisms of cardiac deterioration in vertebrate models. The final section will discuss the implications of work done in the nascent fruit fly model system for aging cardiac function and conclude by outlining potential future uses for invertebrate cardiac model systems.


Assuntos
Envelhecimento/fisiologia , Coração/fisiologia , Animais , Drosophila , Humanos , Insulina/fisiologia , Mamíferos , Modelos Biológicos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA