Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Hum Mol Genet ; 33(R1): R80-R91, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38779772

RESUMO

Mitochondria are pleiotropic organelles central to an array of cellular pathways including metabolism, signal transduction, and programmed cell death. Mitochondria are also key drivers of mammalian immune responses, functioning as scaffolds for innate immune signaling, governing metabolic switches required for immune cell activation, and releasing agonists that promote inflammation. Mitochondrial DNA (mtDNA) is a potent immunostimulatory agonist, triggering pro-inflammatory and type I interferon responses in a host of mammalian cell types. Here we review recent advances in how mtDNA is detected by nucleic acid sensors of the innate immune system upon release into the cytoplasm and extracellular space. We also discuss how the interplay between mtDNA release and sensing impacts cellular innate immune endpoints relevant to health and disease.


Assuntos
DNA Mitocondrial , Imunidade Inata , Mitocôndrias , Transdução de Sinais , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/imunologia , Mitocôndrias/genética , Animais , Transdução de Sinais/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Interferon Tipo I/genética , Inflamação/imunologia , Inflamação/genética
2.
bioRxiv ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38798587

RESUMO

Mitochondrial diseases (MtD) represent a significant public health challenge due to their heterogenous clinical presentation, often severe and progressive symptoms, and the lack of effective therapies. Environmental exposures, such bacterial and viral infection, can further compromise mitochondrial function and exacerbate the progression of MtD. Infections in MtD patients more frequently progress to sepsis, pneumonia, and other detrimental inflammatory endpoints. However, the underlying immune alterations that enhance immunopathology in MtD remain unclear, constituting a key gap in knowledge that complicates treatment and increases mortality in this population. Here we employ in vitro and in vivo approaches to clarify the molecular and cellular basis for innate immune hyperactivity in models of polymerase gamma (Polg)-related MtD. We reveal that type I interferon (IFN-I)-mediated upregulation of caspase-11 and guanylate-binding proteins (GBPs) increase macrophage sensing of the opportunistic microbe Pseudomonas aeruginosa (PA) in Polg mutant mice. Furthermore, we show that excessive macrophage cytokine secretion and pyroptotic cell death contribute to lung inflammation and morbidity after infection with PA. Our work sheds new light on innate immune dysregulation in MtD and reveals potential targets for limiting infection- and inflammation-related complications in Polg-related MtD.

3.
APL Bioeng ; 8(1): 016112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38420625

RESUMO

Fluorescence lifetime imaging of the co-enzyme reduced nicotinamide adenine dinucleotide (NADH) offers a label-free approach for detecting cellular metabolic perturbations. However, the relationships between variations in NADH lifetime and metabolic pathway changes are complex, preventing robust interpretation of NADH lifetime data relative to metabolic phenotypes. Here, a three-dimensional convolutional neural network (3D CNN) trained at the cell level with 3D NAD(P)H lifetime decay images (two spatial dimensions and one time dimension) was developed to identify metabolic pathway usage by cancer cells. NADH fluorescence lifetime images of MCF7 breast cancer cells with three isolated metabolic pathways, glycolysis, oxidative phosphorylation, and glutaminolysis were obtained by a multiphoton fluorescence lifetime microscope and then segmented into individual cells as the input data for the classification models. The 3D CNN models achieved over 90% accuracy in identifying cancer cells reliant on glycolysis, oxidative phosphorylation, or glutaminolysis. Furthermore, the model trained with human breast cancer cell data successfully predicted the differences in metabolic phenotypes of macrophages from control and POLG-mutated mice. These results suggest that the integration of autofluorescence lifetime imaging with 3D CNNs enables intracellular spatial patterns of NADH intensity and temporal dynamics of the lifetime decay to discriminate multiple metabolic phenotypes. Furthermore, the use of 3D CNNs to identify metabolic phenotypes from NADH fluorescence lifetime decay images eliminates the need for time- and expertise-demanding exponential decay fitting procedures. In summary, metabolic-prediction CNNs will enable live-cell and in vivo metabolic measurements with single-cell resolution, filling a current gap in metabolic measurement technologies.

4.
Front Bioeng Biotechnol ; 11: 1293268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090715

RESUMO

Metabolic reprogramming at a cellular level contributes to many diseases including cancer, yet few assays are capable of measuring metabolic pathway usage by individual cells within living samples. Here, autofluorescence lifetime imaging is combined with single-cell segmentation and machine-learning models to predict the metabolic pathway usage of cancer cells. The metabolic activities of MCF7 breast cancer cells and HepG2 liver cancer cells were controlled by growing the cells in culture media with specific substrates and metabolic inhibitors. Fluorescence lifetime images of two endogenous metabolic coenzymes, reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavin adenine dinucleotide (FAD), were acquired by a multi-photon fluorescence lifetime microscope and analyzed at the cellular level. Quantitative changes of NADH and FAD lifetime components were observed for cells using glycolysis, oxidative phosphorylation, and glutaminolysis. Conventional machine learning models trained with the autofluorescence features classified cells as dependent on glycolytic or oxidative metabolism with 90%-92% accuracy. Furthermore, adapting convolutional neural networks to predict cancer cell metabolic perturbations from the autofluorescence lifetime images provided improved performance, 95% accuracy, over traditional models trained via extracted features. Additionally, the model trained with the lifetime features of cancer cells could be transferred to autofluorescence lifetime images of T cells, with a prediction that 80% of activated T cells were glycolytic, and 97% of quiescent T cells were oxidative. In summary, autofluorescence lifetime imaging combined with machine learning models can detect metabolic perturbations between glycolysis and oxidative metabolism of living samples at a cellular level, providing a label-free technology to study cellular metabolism and metabolic heterogeneity.

5.
Cell ; 186(14): 3013-3032.e22, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352855

RESUMO

Mitochondrial DNA (mtDNA) is a potent agonist of the innate immune system; however, the exact immunostimulatory features of mtDNA and the kinetics of detection by cytosolic nucleic acid sensors remain poorly defined. Here, we show that mitochondrial genome instability promotes Z-form DNA accumulation. Z-DNA binding protein 1 (ZBP1) stabilizes Z-form mtDNA and nucleates a cytosolic complex containing cGAS, RIPK1, and RIPK3 to sustain STAT1 phosphorylation and type I interferon (IFN-I) signaling. Elevated Z-form mtDNA, ZBP1 expression, and IFN-I signaling are observed in cardiomyocytes after exposure to Doxorubicin, a first-line chemotherapeutic agent that induces frequent cardiotoxicity in cancer patients. Strikingly, mice lacking ZBP1 or IFN-I signaling are protected from Doxorubicin-induced cardiotoxicity. Our findings reveal ZBP1 as a cooperative partner for cGAS that sustains IFN-I responses to mitochondrial genome instability and highlight ZBP1 as a potential target in heart failure and other disorders where mtDNA stress contributes to interferon-related pathology.


Assuntos
Cardiotoxicidade , DNA Mitocondrial , Animais , Camundongos , DNA Mitocondrial/metabolismo , Imunidade Inata , Interferons/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosforilação
6.
J Transl Med ; 21(1): 331, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208779

RESUMO

BACKGROUND: People with mitochondrial disease (MtD) are susceptible to metabolic decompensation and neurological symptom progression in response to an infection. Increasing evidence suggests that mitochondrial dysfunction may cause chronic inflammation, which may promote hyper-responsiveness to pathogens and neurodegeneration. We sought to examine transcriptional changes between MtD patients and healthy controls to identify common gene signatures of immune dysregulation in MtD. METHODS: We collected whole blood from a cohort of MtD patients and healthy controls and performed RNAseq to examine transcriptomic differences. We performed GSEA analyses to compare our findings against existing studies to identify commonly dysregulated pathways. RESULTS: Gene sets involved in inflammatory signaling, including type I interferons, interleukin-1ß and antiviral responses, are enriched in MtD patients compared to controls. Monocyte and dendritic cell gene clusters are also enriched in MtD patients, while T cell and B cell gene sets are negatively enriched. The enrichment of antiviral response corresponds with an independent set of MELAS patients, and two mouse models of mtDNA dysfunction. CONCLUSIONS: Through the convergence of our results, we demonstrate translational evidence of systemic peripheral inflammation arising from MtD, predominantly through antiviral response gene sets. This provides key evidence linking mitochondrial dysfunction to inflammation, which may contribute to the pathogenesis of primary MtD and other chronic inflammatory disorders associated with mitochondrial dysfunction.


Assuntos
Interferons , Doenças Mitocondriais , Animais , Camundongos , Interferons/genética , Transcriptoma/genética , Inflamação/genética , Inflamação/patologia , Antivirais
7.
J Immunol ; 210(11): 1761-1770, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37067290

RESUMO

Borrelia burgdorferi, the etiologic agent of Lyme disease, is a spirochete that modulates numerous host pathways to cause a chronic, multisystem inflammatory disease in humans. B. burgdorferi infection can lead to Lyme carditis, neurologic complications, and arthritis because of the ability of specific borrelial strains to disseminate, invade, and drive inflammation. B. burgdorferi elicits type I IFN (IFN-I) responses in mammalian cells and tissues that are associated with the development of severe arthritis or other Lyme-related complications. However, the innate immune sensors and signaling pathways controlling IFN-I induction remain unclear. In this study, we examined whether intracellular nucleic acid sensing is required for the induction of IFN-I to B. burgdorferi. Using fluorescence microscopy, we show that B. burgdorferi associates with mouse and human cells in culture, and we document that internalized spirochetes colocalize with the pattern recognition receptor cyclic GMP-AMP synthase (cGAS). Moreover, we report that IFN-I responses in mouse macrophages and murine embryonic fibroblasts are significantly attenuated in the absence of cGAS or its adaptor stimulator of IFN genes (STING), which function to sense and respond to intracellular DNA. Longitudinal in vivo tracking of bioluminescent B. burgdorferi revealed similar dissemination kinetics and borrelial load in C57BL/6J wild-type, cGAS-deficient, or STING-deficient mice. However, infection-associated tibiotarsal joint pathology and inflammation were modestly reduced in cGAS-deficient compared with wild-type mice. Collectively, these results indicate that the cGAS-STING pathway is a critical mediator of mammalian IFN-I signaling and innate immune responses to B. burgdorferi.


Assuntos
Artrite , Borrelia burgdorferi , Interferon Tipo I , Doença de Lyme , Animais , Humanos , Camundongos , Inflamação , Interferon Tipo I/metabolismo , Mamíferos/metabolismo , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
8.
Behav Brain Res ; 444: 114381, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36870396

RESUMO

Based on previous results showing a pivotal role of endogenous interleukin-10 (IL-10) in the recovery from cisplatin-induced peripheral neuropathy, the present experiments were carried out to determine whether this cytokine plays any role in the recovery from cisplatin-induced fatigue in male mice. Fatigue was measured by decreased voluntary wheel running in mice trained to run in a wheel in response to cisplatin. Mice were treated with a monoclonal neutralizing antibody (IL-10na) administered intranasally during the recovery period to neutralize endogenous IL-10. In the first experiment, mice were treated with cisplatin (2.83 mg/kg/day) for five days and IL-10na (12 µg/day for three days) five days later. In the second experiment, they were treated with cisplatin (2.3 mg/kg/day for 5 days twice at a five-day interval) and IL10na (12 µg/day for three days) immediately after the last injection of cisplatin. In both experiments, cisplatin decreased body weight and reduced voluntary wheel running. However, IL-10na did not impair recovery from these effects. These results show that the recovery from the cisplatin-induced decrease in wheel running does not require endogenous IL-10 in contrast to the recovery from cisplatin-induced peripheral neuropathy.


Assuntos
Cisplatino , Interleucina-10 , Camundongos , Masculino , Animais , Interleucina-10/farmacologia , Cisplatino/farmacologia , Atividade Motora/fisiologia , Fadiga , Citocinas/farmacologia
9.
J Immunol ; 210(8): 1123-1133, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36881877

RESUMO

NF-κB-inducing kinase (NIK), which is essential for the activation of the noncanonical NF-κB pathway, regulates diverse processes in immunity, development, and disease. Although recent studies have elucidated important functions of NIK in adaptive immune cells and cancer cell metabolism, the role of NIK in metabolic-driven inflammatory responses in innate immune cells remains unclear. In this study, we demonstrate that murine NIK-deficient bone marrow-derived macrophages exhibit defects in mitochondrial-dependent metabolism and oxidative phosphorylation, which impair the acquisition of a prorepair, anti-inflammatory phenotype. Subsequently, NIK-deficient mice exhibit skewing of myeloid cells characterized by aberrant eosinophil, monocyte, and macrophage cell populations in the blood, bone marrow, and adipose tissue. Furthermore, NIK-deficient blood monocytes display hyperresponsiveness to bacterial LPS and elevated TNF-α production ex vivo. These findings suggest that NIK governs metabolic rewiring, which is critical for balancing proinflammatory and anti-inflammatory myeloid immune cell function. Overall, our work highlights a previously unrecognized role for NIK as a molecular rheostat that fine-tunes immunometabolism in innate immunity, and suggests that metabolic dysfunction may be an important driver of inflammatory diseases caused by aberrant NIK expression or activity.


Assuntos
Proteínas Serina-Treonina Quinases , Transdução de Sinais , Camundongos , Animais , Transdução de Sinais/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , NF-kappa B/metabolismo , Diferenciação Celular , Imunidade Inata , Quinase Induzida por NF-kappaB
10.
Res Sq ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36909538

RESUMO

Background: People with mitochondrial disease (MtD) are susceptible to metabolic decompensation and neurological symptom progression in response to an infection. Increasing evidence suggests that mitochondrial dysfunction may cause chronic inflammation, which may promote hyperresponsiveness to pathogens and neurodegeneration. Methods: We collected whole blood from a cohort of MtD patients and healthy controls and performed RNAseq to examine transcriptomic differences. We performed GSEA analyses to compare our findings against existing studies to identify commonly dysregulated pathways. Results: Gene sets involved in inflammatory signaling, including type I interferons, interleukin-1ß and antiviral responses, are enriched in MtD patients compared to controls. Monocyte and dendritic cell gene clusters are also enriched in MtD patients, while T cell and B cell gene sets are negatively enriched. The enrichment of antiviral response corresponds with an independent set of MELAS patients, and two mouse models of mtDNA dysfunction. Conclusions: Through the convergence of our results, we demonstrate translational evidence of systemic peripheral inflammation arising from MtD, predominantly through antiviral response gene sets. This provides key evidence linking mitochondrial dysfunction to inflammation, which may contribute to the pathogenesis of primary MtD and other chronic inflammatory disorders associated with mitochondrial dysfunction.

11.
Cell ; 185(17): 3214-3231.e23, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35907404

RESUMO

Although mutations in mitochondrial-associated genes are linked to inflammation and susceptibility to infection, their mechanistic contributions to immune outcomes remain ill-defined. We discovered that the disease-associated gain-of-function allele Lrrk2G2019S (leucine-rich repeat kinase 2) perturbs mitochondrial homeostasis and reprograms cell death pathways in macrophages. When the inflammasome is activated in Lrrk2G2019S macrophages, elevated mitochondrial ROS (mtROS) directs association of the pore-forming protein gasdermin D (GSDMD) to mitochondrial membranes. Mitochondrial GSDMD pore formation then releases mtROS, promoting a switch to RIPK1/RIPK3/MLKL-dependent necroptosis. Consistent with enhanced necroptosis, infection of Lrrk2G2019S mice with Mycobacterium tuberculosis elicits hyperinflammation and severe immunopathology. Our findings suggest a pivotal role for GSDMD as an executer of multiple cell death pathways and demonstrate that mitochondrial dysfunction can direct immune outcomes via cell death modality switching. This work provides insights into how LRRK2 mutations manifest or exacerbate human diseases and identifies GSDMD-dependent necroptosis as a potential target to limit Lrrk2G2019S-mediated immunopathology.


Assuntos
Mitocôndrias , Necroptose , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animais , Humanos , Inflamassomos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Macrófagos , Camundongos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Curr Protoc ; 2(2): e372, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35175686

RESUMO

Mitochondria have emerged as key drivers of mammalian innate immune responses, functioning as signaling hubs to trigger inflammation and orchestrating metabolic switches required for phagocyte activation. Mitochondria also contain damage-associated molecular patterns (DAMPs), molecules that share similarity with pathogen-associated molecular patterns (PAMPs) and can engage innate immune sensors to drive inflammation. The aberrant release of mitochondrial DAMPs during cellular stress and injury is an increasingly recognized trigger of inflammatory responses in human diseases. Mitochondrial DNA (mtDNA) is a particularly potent DAMP that engages multiple innate immune sensors, although mounting evidence suggests that cytosolic mtDNA is primarily detected via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. cGAS and STING are widely expressed in mammalian cells and serve as key regulators of type I interferon and cytokine expression in both infectious and inflammatory diseases. Despite growing roles for the mtDNA-cGAS-STING axis in human disease, assays to quantify mtDNA release into the cytosol and approaches to link mtDNA to cGAS-STING signaling are not standardized, which increases the possibility for experimental artifacts and misinterpretation of data. Here, we present a series of protocols for assaying the release of mtDNA into the cytosol and subsequent activation of innate immune signaling in mammalian cells. We highlight genetic and pharmacological approaches to induce and inhibit mtDNA release from mitochondria. We also describe immunofluorescence microscopy and cellular fractionation assays to visualize morphological changes in mtDNA and quantify mtDNA accumulation in the cytosol. Finally, we include protocols to examine mtDNA-dependent cGAS-STING activation by RT-qPCR and western blotting. These methods can be performed with standard laboratory equipment and are highly adaptable to a wide range of mammalian cell types. They will permit researchers working across the spectrum of biological and biomedical sciences to accurately and reproducibly measure cytosolic mtDNA release and resulting innate immune responses. © 2022 Wiley Periodicals LLC. Basic Protocol 1: siRNA-mediated knockdown of TFAM to induce mtDNA instability, cytosolic release, and activation of the cGAS-STING pathway Alternate Protocol: Pharmacological induction of mtDNA release and cGAS-STING activation using ABT-737 and Q-VD-OPH Basic Protocol 2: Isolation and quantitation of DNA from cytosolic, mitochondrial, and nuclear fractions Basic Protocol 3: Pharmacological inhibition of mtDNA replication and release.


Assuntos
DNA Mitocondrial , Proteínas de Membrana , Animais , Citosol/metabolismo , DNA Mitocondrial/genética , Humanos , Imunidade Inata/genética , Proteínas de Membrana/genética , Mitocôndrias/genética
13.
Behav Brain Res ; 417: 113607, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34571117

RESUMO

Tumor growth is associated with metabolic reprogramming of various organs including the liver. This metabolic reprogramming is responsible for the development of behavioral fatigue represented by decreased voluntary wheel running in a murine model of lung cancer. To determine whether interleukin (IL-)6 induced by the tumor is responsible for the metabolic reprogramming, mice injected with Lewis lung carcinoma cells in the flank were treated with an anti-mouse IL-6 monoclonal neutralizing antibody using a 2 × 2 factorial design (+/- tumor and +/- anti-IL-6 antibody). Endpoints were represented by behavioral, metabolic and immune phenotypes. Despite its ability to abrogate the increase in plasma levels of IL-6 that was apparent in tumor-bearing mice and decrease inflammatory signaling in the liver, immunoneutralization of IL-6 had no effect on voluntary wheel running and did not modify the tumor-induced alterations in hepatic gene expression of inflammatory cytokines and metabolic factors. These negative results indicate that IL-6 does not mediate the communication between tumor and host in mice implanted with Lewis lung carcinoma.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Carcinoma Pulmonar de Lewis/imunologia , Interleucina-6/imunologia , Fadiga Muscular/fisiologia , Animais , Modelos Animais de Doenças , Inflamação , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia
14.
Cells ; 10(12)2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34943861

RESUMO

Biallelic pathogenic variants in CLPP, encoding mitochondrial matrix peptidase ClpP, cause a rare autosomal recessive condition, Perrault syndrome type 3 (PRLTS3). It is characterized by primary ovarian insufficiency and early sensorineural hearing loss, often associated with progressive neurological deficits. Mouse models showed that accumulations of (i) its main protein interactor, the substrate-selecting AAA+ ATPase ClpX, (ii) mitoribosomes, and (iii) mtDNA nucleoids are the main cellular consequences of ClpP absence. However, the sequence of these events and their validity in human remain unclear. Here, we studied global proteome profiles to define ClpP substrates among mitochondrial ClpX interactors, which accumulated consistently in ClpP-null mouse embryonal fibroblasts and brains. Validation work included novel ClpP-mutant patient fibroblast proteomics. ClpX co-accumulated in mitochondria with the nucleoid component POLDIP2, the mitochondrial poly(A) mRNA granule element LRPPRC, and tRNA processing factor GFM1 (in mouse, also GRSF1). Only in mouse did accumulated ClpX, GFM1, and GRSF1 appear in nuclear fractions. Mitoribosomal accumulation was minor. Consistent accumulations in murine and human fibroblasts also affected multimerizing factors not known as ClpX interactors, namely, OAT, ASS1, ACADVL, STOM, PRDX3, PC, MUT, ALDH2, PMPCB, UQCRC2, and ACADSB, but the impact on downstream metabolites was marginal. Our data demonstrate the primary impact of ClpXP on the assembly of proteins with nucleic acids and show nucleoid enlargement in human as a key consequence.


Assuntos
Núcleo Celular/metabolismo , DNA Mitocondrial/metabolismo , Endopeptidase Clp/metabolismo , Mitocôndrias/metabolismo , Adulto , Aminoácidos/metabolismo , Encéfalo/metabolismo , Biologia Computacional , Sequência Conservada , Fibroblastos/metabolismo , Humanos , Masculino , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Ligação Proteica , Mapas de Interação de Proteínas , Proteoma/metabolismo , Pele/patologia , Frações Subcelulares/metabolismo , Transcrição Gênica
15.
Brain Behav Immun ; 97: 204-218, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34333111

RESUMO

Gulf War Illness (GWI) is a chronic, multi-symptom disorder affecting approximately 30 percent of the nearly 700,000 Veterans of the 1991 Persian Gulf War. GWI-related chemical (GWIC) exposure promotes immune activation that correlates with cognitive impairment and other symptoms of GWI. However, the molecular mechanisms and signaling pathways linking GWIC to inflammation and neurological symptoms remain unclear. Here we show that acute exposure of murine macrophages to GWIC potentiates innate immune signaling and inflammatory cytokine production. Using an established mouse model of GWI, we report that neurobehavioral changes and neuroinflammation are attenuated in mice lacking the cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) and NOD-, LRR- or pyrin domain-containing protein 3 (NLRP3) innate immune pathways. In addition, we report sex differences in response to GWIC, with female mice showing more pronounced cognitive impairment and hippocampal astrocyte hypertrophy. In contrast, male mice display a GWIC-dependent upregulation of proinflammatory cytokines in the plasma that is not present in female mice. Our results indicate that STING and NLRP3 are key mediators of the cognitive impairment and inflammation observed in GWI and provide important new information on sex differences in this model.


Assuntos
Disfunção Cognitiva , Síndrome do Golfo Pérsico , Animais , Feminino , Guerra do Golfo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Neuroimunomodulação
16.
Neurogenetics ; 22(4): 297-312, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34345994

RESUMO

Mitochondrial dysfunction may activate innate immunity, e.g. upon abnormal handling of mitochondrial DNA in TFAM mutants or in altered mitophagy. Recent reports showed that also deletion of mitochondrial matrix peptidase ClpP in mice triggers transcriptional upregulation of inflammatory factors. Here, we studied ClpP-null mouse brain at two ages and mouse embryonal fibroblasts, to identify which signaling pathways are responsible, employing mass spectrometry, subcellular fractionation, immunoblots, and reverse transcriptase polymerase chain reaction. Several mitochondrial unfolded protein response factors showed accumulation and altered migration in blue-native gels, prominently the co-chaperone DNAJA3. Its mitochondrial dysregulation increased also its extra-mitochondrial abundance in the nucleus, a relevant observation given that DNAJA3 modulates innate immunity. Similar observations were made for STAT1, a putative DNAJA3 interactor. Elevated expression was observed not only for the transcription factors Stat1/2, but also for two interferon-stimulated genes (Ifi44, Gbp3). Inflammatory responses were strongest for the RLR pattern recognition receptors (Ddx58, Ifih1, Oasl2, Trim25) and several cytosolic nucleic acid sensors (Ifit1, Ifit3, Oas1b, Ifi204, Mnda). The consistent dysregulation of these factors from an early age might influence also human Perrault syndrome, where ClpP loss-of-function leads to early infertility and deafness, with subsequent widespread neurodegeneration.


Assuntos
Proteínas de Choque Térmico HSP40/metabolismo , Imunidade Inata/imunologia , Ácidos Nucleicos/metabolismo , Fator de Transcrição STAT1/metabolismo , Animais , Citosol/imunologia , Citosol/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/imunologia , Proteínas de Choque Térmico HSP40/imunologia , Camundongos , Mitocôndrias/genética , Mitocôndrias/imunologia , Ácidos Nucleicos/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Fator de Transcrição STAT1/imunologia , Regulação para Cima
17.
Cells ; 10(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209640

RESUMO

The age of incidence of spinal cord injury (SCI) and the average age of people living with SCI is continuously increasing. However, SCI is extensively modeled in young adult animals, hampering translation of research to clinical applications. While there has been significant progress in manipulating axon growth after injury, the impact of aging is still unknown. Mitochondria are essential to successful neurite and axon growth, while aging is associated with a decline in mitochondrial functions. Using isolation and culture of adult cortical neurons, we analyzed mitochondrial changes in 2-, 6-, 12- and 18-month-old mice. We observed reduced neurite growth in older neurons. Older neurons also showed dysfunctional respiration, reduced membrane potential, and altered mitochondrial membrane transport proteins; however, mitochondrial DNA (mtDNA) abundance and cellular ATP were increased. Taken together, these data suggest that dysfunctional mitochondria in older neurons may be associated with the age-dependent reduction in neurite growth. Both normal aging and traumatic injury are associated with mitochondrial dysfunction, posing a challenge for an aging SCI population as the two elements can combine to worsen injury outcomes. The results of this study highlight this as an area of great interest in CNS trauma.


Assuntos
Envelhecimento/patologia , Córtex Cerebral/patologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Trifosfato de Adenosina/metabolismo , Animais , Respiração Celular , Células Cultivadas , Variações do Número de Cópias de DNA/genética , DNA Mitocondrial/metabolismo , Transporte de Elétrons , Espaço Intracelular/metabolismo , Potencial da Membrana Mitocondrial , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Membranas Mitocondriais/metabolismo , Neuritos/metabolismo , Fosforilação Oxidativa
18.
Sci Adv ; 7(22)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34039599

RESUMO

Mitochondrial dysfunction is a key driver of inflammatory responses in human disease. However, it remains unclear whether alterations in mitochondria-innate immune cross-talk contribute to the pathobiology of mitochondrial disorders and aging. Using the polymerase gamma (POLG) mutator model of mitochondrial DNA instability, we report that aberrant activation of the type I interferon (IFN-I) innate immune axis potentiates immunometabolic dysfunction, reduces health span, and accelerates aging in mutator mice. Mechanistically, elevated IFN-I signaling suppresses activation of nuclear factor erythroid 2-related factor 2 (NRF2), which increases oxidative stress, enhances proinflammatory cytokine responses, and accelerates metabolic dysfunction. Ablation of IFN-I signaling attenuates hyperinflammatory phenotypes by restoring NRF2 activity and reducing aerobic glycolysis, which combine to lessen cardiovascular and myeloid dysfunction in aged mutator mice. These findings further advance our knowledge of how mitochondrial dysfunction shapes innate immune responses and provide a framework for understanding mitochondria-driven immunopathology in POLG-related disorders and aging.


Assuntos
DNA Mitocondrial , Interferon Tipo I , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Inflamação/genética , Inflamação/metabolismo , Interferon Tipo I/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
19.
J Immunol ; 206(8): 1890-1900, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33731338

RESUMO

Caseinolytic mitochondrial matrix peptidase proteolytic subunit (CLPP) is a serine protease that degrades damaged or misfolded mitochondrial proteins. CLPP-null mice exhibit growth retardation, deafness, and sterility, resembling human Perrault syndrome, but also display immune system alterations. However, the molecular mechanisms and signaling pathways underlying immunological changes in CLPP-null mice remain unclear. In this study, we report the steady-state activation of type I IFN signaling and antiviral gene expression in CLPP-deficient cells and tissues, resulting in marked resistance to RNA and DNA virus infection. Depletion of the cyclic GMP-AMP (cGAS)-stimulator of IFN genes (STING) DNA sensing pathway reduces steady-state IFN-I signaling and abrogates the broad antiviral phenotype of CLPP-null cells. Moreover, we report that CLPP deficiency leads to mitochondrial DNA (mtDNA) instability and packaging alterations. Pharmacological and genetic approaches to deplete mtDNA or inhibit cytosolic release markedly reduce antiviral gene expression, implicating mtDNA stress as the driver of IFN-I signaling in CLPP-null mice. Our work places the cGAS-STING-IFN-I innate immune pathway downstream of CLPP and may have implications for understanding Perrault syndrome and other human diseases involving CLPP dysregulation.


Assuntos
Interferon beta , Nucleotidiltransferases , Animais , DNA Mitocondrial/genética , Endopeptidase Clp/genética , Humanos , Interferon beta/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Nucleotídeos Cíclicos , Nucleotidiltransferases/metabolismo , Peptídeo Hidrolases
20.
Nature ; 587(7835): 673-677, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32911481

RESUMO

Nucleic acids derived from pathogens induce potent innate immune responses1-6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor that catalyses the synthesis of the cyclic dinucleotide cyclic GMP-AMP, which mediates the induction of type I interferons through the STING-TBK1-IRF3 signalling axis7-11. cGAS was previously thought to not react with self DNA owing to its cytosolic localization2,12,13; however, recent studies have shown that cGAS is localized mostly in the nucleus and has low activity as a result of tight nuclear tethering14-18. Here we show that cGAS binds to nucleosomes with nanomolar affinity and that nucleosome binding potently inhibits its catalytic activity. To elucidate the molecular basis of cGAS inactivation by nuclear tethering, we determined the structure of mouse cGAS bound to human nucleosome by cryo-electron microscopy. The structure shows that cGAS binds to a negatively charged acidic patch formed by histones H2A and H2B via its second DNA-binding site19. High-affinity nucleosome binding blocks double-stranded DNA binding and maintains cGAS in an inactive conformation. Mutations of cGAS that disrupt nucleosome binding alter cGAS-mediated signalling in cells.


Assuntos
Nucleossomos/química , Nucleossomos/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/química , Animais , Biocatálise , Domínio Catalítico , Linhagem Celular , Microscopia Crioeletrônica , DNA/química , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Humanos , Camundongos , Modelos Moleculares , Mutação , Nucleossomos/ultraestrutura , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/ultraestrutura , Ligação Proteica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA