Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6410, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302781

RESUMO

Low-lying island nations like Indonesia are vulnerable to sea level Height EXtremes (HEXs). When compounded by marine heatwaves, HEXs have larger ecological and societal impact. Here we combine observations with model simulations, to investigate the HEXs and Compound Height-Heat Extremes (CHHEXs) along the Indian Ocean coast of Indonesia in recent decades. We find that anthropogenic sea level rise combined with decadal climate variability causes increased occurrence of HEXs during 2010-2017. Both HEXs and CHHEXs are driven by equatorial westerly and longshore northwesterly wind anomalies. For most HEXs, which occur during December-March, downwelling favorable northwest monsoon winds are enhanced but enhanced vertical mixing limits surface warming. For most CHHEXs, wind anomalies associated with a negative Indian Ocean Dipole (IOD) and co-occurring La Niña weaken the southeasterlies and cooling from coastal upwelling during May-June and November-December. Our findings emphasize the important interplay between anthropogenic warming and climate variability in affecting regional extremes.


Assuntos
El Niño Oscilação Sul , Vento , Estações do Ano , Indonésia , Oceano Índico
2.
J Phys Chem B ; 113(5): 1277-93, 2009 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19175341

RESUMO

In conjugated polymer devices that switch from one oxidation level to another, such as artificial muscles, it is important to understand memory effects that stem from conformational relaxation movements of the polymer chains. Chronoamperometry during electrochemical switching of polypyrrole doped with dodecylbenzenesulfonate, PPy(DBS), is used to gain insight into the conformational relaxation processes in cation-transporting materials. During oxidation, the current decays exponentially with a time constant that decreases with the anodic voltage. During reduction, there is again an exponentially decaying current with a time constant that decreases with the cathodic voltage, but superimposed on that is a small current peak that increases in size with the voltage. This peak accounts for a maximum of approximately 20% of the total reduction charge, which is approximately the same amount of charge that is in the most cathodic pair of peaks in the cyclic voltammogram. The position of this peak depends logarithmically on the applied cathodic potential (shifting to shorter times with larger Eca) as well as on the anodic potential that was applied just prior to the reduction step (shifting to longer times with Ean). Furthermore, the shoulder position depends logarithmically on the time that the prior anodic voltage was held (shifting to longer times with twait). These results are consistent with the electrochemically stimulated conformational relaxation (ESCR) model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA